A steel rod of length \[l\], area of cross section \[A\], Young’s modulus \[E\] and linear coefficient of expansion \[a\] is heated through \[t^\circ {\text{C}}\]. The work that can be performed by rod when heated is
A. \[\left( {EAat} \right) \times \left( {lat} \right)\]
B. \[\dfrac{1}{2}\left( {EAat} \right) \times \left( {lat} \right)\]
C. \[\dfrac{1}{2}\left( {EAat} \right) \times \dfrac{1}{2}\left( {lat} \right)\]
D. \[2\left( {EAat} \right)\left( {lat} \right)\]
Answer
Verified
451.2k+ views
Hint: Use the formula for work done per unit volume in terms of the stress and strain. Use the formula for the coefficient of linear thermal expansion. Use the formula for Young’s modulus for the material of an object and the formula for strain in an object. Using these equations, derive the formula for stress and strain in terms of coefficient of linear thermal expansion and substitute it in the formula for work per unit volume.
Formulae used:
The formula for work per unit volume is
\[\dfrac{W}{V} = \dfrac{1}{2} \times {\text{stress}} \times {\text{strain}}\] …… (1)
Here, \[W\] is the work and \[V\] is the volume.
The formula for coefficient of linear thermal expansion \[\alpha \] is
\[\alpha = \dfrac{{\Delta L}}{{L\Delta T}}\] …… (2)
Here, \[\Delta L\] is the change in length, is original length and \[\Delta T\] is change in temperature of the rod.
The formula for Young’s modulus \[Y\] for material of a substance is
\[Y = \dfrac{{{\text{Stress}}}}{{{\text{Strain}}}}\] …… (3)
The strain is given by
\[{\text{Strain}} = \dfrac{{\Delta L}}{L}\] …… (4)
Here, \[L\] is the original length of the rod and \[\Delta L\] is the change in length of the rod.
Complete step by step answer:
We have given that the length of the steel rod is \[l\], the cross sectional area of the steel rod is \[A\], Young’s modulus of the steel is \[E\] and the coefficient of linear thermal expansion for the steel rod is \[a\]. We have also given that the steel rod is heated by a temperature of \[t^\circ {\text{C}}\]. We have asked to calculate the work done by the steel rod when it is heated. We can use equation (1) to calculate the work performed by the rod.
Rearrange equation (1) for the work performed by the rod.
\[W = \dfrac{1}{2} \times {\text{stress}} \times {\text{strain}} \times V\] …… (5)
Let us first calculate the value of stress.
Substitute \[E\] for \[Y\] and \[\dfrac{{\Delta l}}{l}\] for \[{\text{Strain}}\] in equation (3).
\[E = \dfrac{{{\text{Stress}}}}{{\dfrac{{\Delta l}}{l}}}\]
\[ \Rightarrow {\text{Stress}} = \dfrac{{E\Delta l}}{l}\]
According to equation (2), substitute \[at\] for \[\dfrac{{\Delta l}}{l}\] in the above equation.
\[ \Rightarrow {\text{Stress}} = Eat\]
Rewrite equation (4) for the strain as
\[{\text{Strain}} = \dfrac{{\Delta l}}{l}\]
According to equation (2), substitute \[at\] for \[\dfrac{{\Delta l}}{l}\] in the above equation.
\[{\text{Strain}} = at\]
The volume of the steel rod can be written as
\[V = Al\]
Substitute \[Eat\] for \[{\text{stress}}\], \[at\] for \[{\text{strain}}\] and \[Al\] for \[V\] in equation (5).
\[W = \dfrac{1}{2} \times \left( {Eat} \right) \times \left( {at} \right) \times \left( {Al} \right)\]
\[\therefore W = \dfrac{1}{2} \times \left( {EAat} \right) \times \left( {lat} \right)\]
Therefore, the work performed by the rod during expansion is \[\dfrac{1}{2} \times \left( {EAat} \right) \times \left( {lat} \right)\].
Hence, the correct option is B.
Note: The students should be careful while deriving the relation for stress and strain acting on the rod in terms of the coefficient of linear thermal expansion of the rod. If the formula for stress and strain are not derived correctly then the final derivation for the work performed by the rod during its expansion will be incorrect.
Formulae used:
The formula for work per unit volume is
\[\dfrac{W}{V} = \dfrac{1}{2} \times {\text{stress}} \times {\text{strain}}\] …… (1)
Here, \[W\] is the work and \[V\] is the volume.
The formula for coefficient of linear thermal expansion \[\alpha \] is
\[\alpha = \dfrac{{\Delta L}}{{L\Delta T}}\] …… (2)
Here, \[\Delta L\] is the change in length, is original length and \[\Delta T\] is change in temperature of the rod.
The formula for Young’s modulus \[Y\] for material of a substance is
\[Y = \dfrac{{{\text{Stress}}}}{{{\text{Strain}}}}\] …… (3)
The strain is given by
\[{\text{Strain}} = \dfrac{{\Delta L}}{L}\] …… (4)
Here, \[L\] is the original length of the rod and \[\Delta L\] is the change in length of the rod.
Complete step by step answer:
We have given that the length of the steel rod is \[l\], the cross sectional area of the steel rod is \[A\], Young’s modulus of the steel is \[E\] and the coefficient of linear thermal expansion for the steel rod is \[a\]. We have also given that the steel rod is heated by a temperature of \[t^\circ {\text{C}}\]. We have asked to calculate the work done by the steel rod when it is heated. We can use equation (1) to calculate the work performed by the rod.
Rearrange equation (1) for the work performed by the rod.
\[W = \dfrac{1}{2} \times {\text{stress}} \times {\text{strain}} \times V\] …… (5)
Let us first calculate the value of stress.
Substitute \[E\] for \[Y\] and \[\dfrac{{\Delta l}}{l}\] for \[{\text{Strain}}\] in equation (3).
\[E = \dfrac{{{\text{Stress}}}}{{\dfrac{{\Delta l}}{l}}}\]
\[ \Rightarrow {\text{Stress}} = \dfrac{{E\Delta l}}{l}\]
According to equation (2), substitute \[at\] for \[\dfrac{{\Delta l}}{l}\] in the above equation.
\[ \Rightarrow {\text{Stress}} = Eat\]
Rewrite equation (4) for the strain as
\[{\text{Strain}} = \dfrac{{\Delta l}}{l}\]
According to equation (2), substitute \[at\] for \[\dfrac{{\Delta l}}{l}\] in the above equation.
\[{\text{Strain}} = at\]
The volume of the steel rod can be written as
\[V = Al\]
Substitute \[Eat\] for \[{\text{stress}}\], \[at\] for \[{\text{strain}}\] and \[Al\] for \[V\] in equation (5).
\[W = \dfrac{1}{2} \times \left( {Eat} \right) \times \left( {at} \right) \times \left( {Al} \right)\]
\[\therefore W = \dfrac{1}{2} \times \left( {EAat} \right) \times \left( {lat} \right)\]
Therefore, the work performed by the rod during expansion is \[\dfrac{1}{2} \times \left( {EAat} \right) \times \left( {lat} \right)\].
Hence, the correct option is B.
Note: The students should be careful while deriving the relation for stress and strain acting on the rod in terms of the coefficient of linear thermal expansion of the rod. If the formula for stress and strain are not derived correctly then the final derivation for the work performed by the rod during its expansion will be incorrect.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE