Answer

Verified

372.6k+ views

**Hint :**Center of mass of a body or system of a particle is defined as, a point at which the whole of the mass of the body or all the masses of a system of particles appears to be concentrated.

Apply center of mass formula,

The equation can be applied individually to each axis,

$ \begin{align}

& {{X}_{com}}=\dfrac{\sum\limits_{i=0}^{n}{{{m}_{i}}{{x}_{i}}}}{M}=\dfrac{{{m}_{1}}{{x}_{1}}+{{m}_{2}}{{x}_{2}}+{{m}_{3}}{{x}_{3}}+...+{{m}_{n}}{{x}_{n}}}{M} \\

& {{Y}_{com}}=\dfrac{\sum\limits_{i=0}^{n}{{{m}_{i}}{{y}_{i}}}}{M}=\dfrac{{{m}_{1}}{{y}_{1}}+{{m}_{2}}{{y}_{2}}+{{m}_{3}}{{y}_{3}}+...+{{m}_{n}}{{y}_{n}}}{M} \\

\end{align} $

This formula is used for point objects.

**Complete step by step solution:**

We have given, a square whose side is a. divide the square into four equal parts.

If the upper part of the square is removed. Then we left with three parts of the square. Now, we have to find the coordinates of the centre of mass of the remaining three parts. Let M is the mass of particles at each corner of the square.

Use center of mass formula,

$ \begin{align}

& {{M}_{1}}\left( x,y \right)=\left( \dfrac{a}{4},\dfrac{a}{4} \right) \\

& {{M}_{2}}\left( x,y \right)=\left( \dfrac{3a}{4},\dfrac{a}{4} \right) \\

& {{M}_{3}}\left( x,y \right)=\left( \dfrac{a}{4},\dfrac{3a}{4} \right) \\

\end{align} $

Now, center of mass formula is given by,

$ \begin{align}

& {{X}_{com}}=\dfrac{{{M}_{1}}{{x}_{1}}+{{M}_{2}}{{x}_{2}}+{{M}_{3}}{{x}_{3}}}{M} \\

& {{M}_{1}}={{M}_{2}}={{M}_{3}}=M \\

& {{X}_{com}}=\dfrac{M\left( \dfrac{a}{4} \right)+M\left( \dfrac{3a}{4} \right)+M\left( \dfrac{a}{4} \right)}{M+M+M} \\

& {{X}_{com}}=\dfrac{\left( \dfrac{a}{4}+\dfrac{3a}{4}+\dfrac{a}{4} \right)M}{3M} \\

& {{X}_{com}}=\dfrac{5a}{4}\times \dfrac{1}{3}=\dfrac{5a}{12} \\

& {{Y}_{com}}=\dfrac{{{M}_{1}}{{y}_{1}}+{{M}_{2}}{{y}_{2}}+{{M}_{3}}{{y}_{3}}}{{{M}_{1}}+{{M}_{2}}+{{M}_{3}}} \\

& {{Y}_{com}}=\dfrac{M\left( \dfrac{a}{4} \right)+M\left( \dfrac{a}{4} \right)+M\left( \dfrac{3a}{4} \right)}{M+M+M} \\

& {{Y}_{com}}=\dfrac{\left( \dfrac{a}{4}+\dfrac{a}{4}+\dfrac{3a}{4} \right)M}{3M}=\dfrac{5a}{12} \\

\end{align} $

**The coordinates of the centre of mass is $ \left( \dfrac{5a}{12},\dfrac{5a}{12} \right) $.**

**Note:**

A point where the whole mass of the body can be assumed to be located or concentrated is called the centre of mass. The point can be real or imaginary, for example in case of a hollow or empty box the mass is physically not located at the centre of mass point. The mass is supposed to be located at the centre of mass in order to simplify calculations.

Recently Updated Pages

The speed of light in vacuum is equal to Amu ovarepsilon class 10 physics CBSE

A virtual image twice as big as the object is formed class 10 physics CBSE

In which order the colour spectrum VIBGYOR appeared class 10 physics CBSE

Which of the following terms is not associated with class 10 physics CBSE

Select from the following the best setup for tracing class 10 physics CBSE

State the law of combination of resistances in par class 10 physics CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Write the 6 fundamental rights of India and explain in detail

Name 10 Living and Non living things class 9 biology CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths