Answer
Verified
405k+ views
Hint : Center of mass of a body or system of a particle is defined as, a point at which the whole of the mass of the body or all the masses of a system of particles appears to be concentrated.
Apply center of mass formula,
The equation can be applied individually to each axis,
$ \begin{align}
& {{X}_{com}}=\dfrac{\sum\limits_{i=0}^{n}{{{m}_{i}}{{x}_{i}}}}{M}=\dfrac{{{m}_{1}}{{x}_{1}}+{{m}_{2}}{{x}_{2}}+{{m}_{3}}{{x}_{3}}+...+{{m}_{n}}{{x}_{n}}}{M} \\
& {{Y}_{com}}=\dfrac{\sum\limits_{i=0}^{n}{{{m}_{i}}{{y}_{i}}}}{M}=\dfrac{{{m}_{1}}{{y}_{1}}+{{m}_{2}}{{y}_{2}}+{{m}_{3}}{{y}_{3}}+...+{{m}_{n}}{{y}_{n}}}{M} \\
\end{align} $
This formula is used for point objects.
Complete step by step solution:
We have given, a square whose side is a. divide the square into four equal parts.
If the upper part of the square is removed. Then we left with three parts of the square. Now, we have to find the coordinates of the centre of mass of the remaining three parts. Let M is the mass of particles at each corner of the square.
Use center of mass formula,
$ \begin{align}
& {{M}_{1}}\left( x,y \right)=\left( \dfrac{a}{4},\dfrac{a}{4} \right) \\
& {{M}_{2}}\left( x,y \right)=\left( \dfrac{3a}{4},\dfrac{a}{4} \right) \\
& {{M}_{3}}\left( x,y \right)=\left( \dfrac{a}{4},\dfrac{3a}{4} \right) \\
\end{align} $
Now, center of mass formula is given by,
$ \begin{align}
& {{X}_{com}}=\dfrac{{{M}_{1}}{{x}_{1}}+{{M}_{2}}{{x}_{2}}+{{M}_{3}}{{x}_{3}}}{M} \\
& {{M}_{1}}={{M}_{2}}={{M}_{3}}=M \\
& {{X}_{com}}=\dfrac{M\left( \dfrac{a}{4} \right)+M\left( \dfrac{3a}{4} \right)+M\left( \dfrac{a}{4} \right)}{M+M+M} \\
& {{X}_{com}}=\dfrac{\left( \dfrac{a}{4}+\dfrac{3a}{4}+\dfrac{a}{4} \right)M}{3M} \\
& {{X}_{com}}=\dfrac{5a}{4}\times \dfrac{1}{3}=\dfrac{5a}{12} \\
& {{Y}_{com}}=\dfrac{{{M}_{1}}{{y}_{1}}+{{M}_{2}}{{y}_{2}}+{{M}_{3}}{{y}_{3}}}{{{M}_{1}}+{{M}_{2}}+{{M}_{3}}} \\
& {{Y}_{com}}=\dfrac{M\left( \dfrac{a}{4} \right)+M\left( \dfrac{a}{4} \right)+M\left( \dfrac{3a}{4} \right)}{M+M+M} \\
& {{Y}_{com}}=\dfrac{\left( \dfrac{a}{4}+\dfrac{a}{4}+\dfrac{3a}{4} \right)M}{3M}=\dfrac{5a}{12} \\
\end{align} $
The coordinates of the centre of mass is $ \left( \dfrac{5a}{12},\dfrac{5a}{12} \right) $.
Note:
A point where the whole mass of the body can be assumed to be located or concentrated is called the centre of mass. The point can be real or imaginary, for example in case of a hollow or empty box the mass is physically not located at the centre of mass point. The mass is supposed to be located at the centre of mass in order to simplify calculations.
Apply center of mass formula,
The equation can be applied individually to each axis,
$ \begin{align}
& {{X}_{com}}=\dfrac{\sum\limits_{i=0}^{n}{{{m}_{i}}{{x}_{i}}}}{M}=\dfrac{{{m}_{1}}{{x}_{1}}+{{m}_{2}}{{x}_{2}}+{{m}_{3}}{{x}_{3}}+...+{{m}_{n}}{{x}_{n}}}{M} \\
& {{Y}_{com}}=\dfrac{\sum\limits_{i=0}^{n}{{{m}_{i}}{{y}_{i}}}}{M}=\dfrac{{{m}_{1}}{{y}_{1}}+{{m}_{2}}{{y}_{2}}+{{m}_{3}}{{y}_{3}}+...+{{m}_{n}}{{y}_{n}}}{M} \\
\end{align} $
This formula is used for point objects.
Complete step by step solution:
We have given, a square whose side is a. divide the square into four equal parts.
If the upper part of the square is removed. Then we left with three parts of the square. Now, we have to find the coordinates of the centre of mass of the remaining three parts. Let M is the mass of particles at each corner of the square.
Use center of mass formula,
$ \begin{align}
& {{M}_{1}}\left( x,y \right)=\left( \dfrac{a}{4},\dfrac{a}{4} \right) \\
& {{M}_{2}}\left( x,y \right)=\left( \dfrac{3a}{4},\dfrac{a}{4} \right) \\
& {{M}_{3}}\left( x,y \right)=\left( \dfrac{a}{4},\dfrac{3a}{4} \right) \\
\end{align} $
Now, center of mass formula is given by,
$ \begin{align}
& {{X}_{com}}=\dfrac{{{M}_{1}}{{x}_{1}}+{{M}_{2}}{{x}_{2}}+{{M}_{3}}{{x}_{3}}}{M} \\
& {{M}_{1}}={{M}_{2}}={{M}_{3}}=M \\
& {{X}_{com}}=\dfrac{M\left( \dfrac{a}{4} \right)+M\left( \dfrac{3a}{4} \right)+M\left( \dfrac{a}{4} \right)}{M+M+M} \\
& {{X}_{com}}=\dfrac{\left( \dfrac{a}{4}+\dfrac{3a}{4}+\dfrac{a}{4} \right)M}{3M} \\
& {{X}_{com}}=\dfrac{5a}{4}\times \dfrac{1}{3}=\dfrac{5a}{12} \\
& {{Y}_{com}}=\dfrac{{{M}_{1}}{{y}_{1}}+{{M}_{2}}{{y}_{2}}+{{M}_{3}}{{y}_{3}}}{{{M}_{1}}+{{M}_{2}}+{{M}_{3}}} \\
& {{Y}_{com}}=\dfrac{M\left( \dfrac{a}{4} \right)+M\left( \dfrac{a}{4} \right)+M\left( \dfrac{3a}{4} \right)}{M+M+M} \\
& {{Y}_{com}}=\dfrac{\left( \dfrac{a}{4}+\dfrac{a}{4}+\dfrac{3a}{4} \right)M}{3M}=\dfrac{5a}{12} \\
\end{align} $
The coordinates of the centre of mass is $ \left( \dfrac{5a}{12},\dfrac{5a}{12} \right) $.
Note:
A point where the whole mass of the body can be assumed to be located or concentrated is called the centre of mass. The point can be real or imaginary, for example in case of a hollow or empty box the mass is physically not located at the centre of mass point. The mass is supposed to be located at the centre of mass in order to simplify calculations.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
At which age domestication of animals started A Neolithic class 11 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Summary of the poem Where the Mind is Without Fear class 8 english CBSE
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE