Answer
Verified
454.2k+ views
Hint: In this question we are asked to calculate the potential energy of the spring when it is further stretched by 10 cm. Now, the potential energy of the spring depends directly on the square of stretched distance (extension). Therefore, we will be using this to calculate the potential energy of spring when it is stretched by 20 cm.
Formula used:
\[E=\dfrac{1}{2}k{{x}^{2}}\]
Complete answer:
It is given that initially the spring was stretched by 10 cm. Later, the spring was further stretched by 10 cm more, making the total extension 20 cm.
Now it is given that the potential energy of the spring when it is stretched by 10 cm is E.
Therefore,
\[E=\dfrac{1}{2}k{{x}^{2}}\] …….. (1)
Where x = 10 cm.
Now, the potential energy if spring when the is stretched 20 cm i.e. \[2x\]is given by,
\[E'=\dfrac{1}{2}k{{(2x)}^{2}}\]
Therefore,
\[E'=\dfrac{1}{2}k{{x}^{2}}\times 4\]
But from (1) we can say that,
\[E'=E\times 4\]
Therefore,
\[E'=4E\]
So, the correct answer is “Option B”.
Note:
The energy that is stored or conserved in an object is called potential energy. This energy is dependent on the position of the object. In case of a spring, the energy that is stored in spring when it is compressed or stretched is the potential energy. It depends on the compression or expansion distance and the material of spring and number of turns. The spring constant is measured in Newtons per metre. The spring constant represents the stiffness of the spring.
Formula used:
\[E=\dfrac{1}{2}k{{x}^{2}}\]
Complete answer:
It is given that initially the spring was stretched by 10 cm. Later, the spring was further stretched by 10 cm more, making the total extension 20 cm.
Now it is given that the potential energy of the spring when it is stretched by 10 cm is E.
Therefore,
\[E=\dfrac{1}{2}k{{x}^{2}}\] …….. (1)
Where x = 10 cm.
Now, the potential energy if spring when the is stretched 20 cm i.e. \[2x\]is given by,
\[E'=\dfrac{1}{2}k{{(2x)}^{2}}\]
Therefore,
\[E'=\dfrac{1}{2}k{{x}^{2}}\times 4\]
But from (1) we can say that,
\[E'=E\times 4\]
Therefore,
\[E'=4E\]
So, the correct answer is “Option B”.
Note:
The energy that is stored or conserved in an object is called potential energy. This energy is dependent on the position of the object. In case of a spring, the energy that is stored in spring when it is compressed or stretched is the potential energy. It depends on the compression or expansion distance and the material of spring and number of turns. The spring constant is measured in Newtons per metre. The spring constant represents the stiffness of the spring.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
The milk of which one of these animals has more fat class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE