Answer

Verified

404.4k+ views

**Hint:**We are given a stationary source. In the first case, the receiver is moving towards the stationary source. We can find the velocity of the observer from the doppler’s effect on this situation. Once we have the velocity of the observer, consider that observer is moving away from the source with the same velocity. From the respective formula of doppler’s effect in this situation, we can have the frequency observed.

**Formula used:**

$\eqalign{

& f = {f_0}\left( {\dfrac{{v + {v_r}}}{v}} \right) \cr

& f' = {f_0}\left( {\dfrac{{v - {v_r}}}{v}} \right) \cr} $

**Complete answer:**

In the question, it is given that the source is initially at rest. And the receiver is in motion.

Let us consider the first case where the receiver is moving towards the source. According to the doppler effect when the source is stationary and the receiver is moving towards the source, the apparent frequency is given by

$f = {f_0}\left( {\dfrac{{v + {v_r}}}{v}} \right)$

Where,

f is the apparent frequency;

$f_0$ is the actual frequency of sound;

v is the velocity of sound in the medium; and

$v_r$ is the velocity of the receiver.

We have the actual frequency to be 350Hz, the apparent frequency as 375Hz, and the velocity of the sound is given as 320 m/s. Substituting these values in the formula, we get

$\eqalign{

& f = {f_0}\left( {\dfrac{{v + {v_r}}}{v}} \right) \cr

& \Rightarrow 375 = 350\left( {\dfrac{{320 + {v_r}}}{{320}}} \right) \cr

& \Rightarrow 320 + {v_r} = \dfrac{{375 \times 320}}{{350}} \cr

& \Rightarrow {v_r} = \dfrac{{375 \times 320}}{{350}} - 320 = 22.85m/s \cr

& \therefore {v_r} = 22.85m/s \cr} $

Therefore, the velocity of the observer is 22.85 m/s.

Now, let us consider the case where the observer is moving away from the source which is stationary. If the apparent frequency, in this case, in this case, is, say, $$f'$$. From doppler’s effect, the formula for $$f'$$ is given by

$f' = {f_0}\left( {\dfrac{{v - {v_r}}}{v}} \right)$

Substituting the values, we get

$\eqalign{

& f' = {f_0}\left( {\dfrac{{v - {v_r}}}{v}} \right) \cr

& \Rightarrow f' = 350\left( {\dfrac{{320 - 22.5}}{{320}}} \right) \cr

& \Rightarrow f' = 350 \times 0.93 = 325.5Hz \cr

& \therefore f' = 325.5Hz \cr} $

Therefore, the frequency heard by the observer while moving away from the stationary source is 325.5 Hz.

**Note:**

Doppler effect is the change in frequency observed during the relative motion of the source and its observer, i.e., the frequency may increase or decrease with respect to the relative motion. The overall formula for the doppler effect can be given by $f = {f_0}\left( {\dfrac{{v \pm {v_r}}}{{v \pm {v_s}}}} \right)$. Where their true meanings hold as in the problem. The doppler’s effect formula for each case may be hard to remember. So, you can keep this formula in mind and change it with respect to the condition. If the receiver is moving towards the source, the numerator variables are added, and vice versa. If the source is moving towards the receiver the variable will add up in the denominator, vice versa.

Recently Updated Pages

Cryolite and fluorspar are mixed with Al2O3 during class 11 chemistry CBSE

Select the smallest atom A F B Cl C Br D I class 11 chemistry CBSE

The best reagent to convert pent 3 en 2 ol and pent class 11 chemistry CBSE

Reverse process of sublimation is aFusion bCondensation class 11 chemistry CBSE

The best and latest technique for isolation purification class 11 chemistry CBSE

Hydrochloric acid is a Strong acid b Weak acid c Strong class 11 chemistry CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

The Buddhist universities of Nalanda and Vikramshila class 7 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Name 10 Living and Non living things class 9 biology CBSE

Which are the Top 10 Largest Countries of the World?

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Who founded the Nalanda University 1 Mauryan 2 Guptas class 6 social science CBSE