
A solution containing \[25.6{\rm{ }} gm\] of sulphur dissolved in \[1000{\rm{ }}gm\] of naphthalene gave a freezing point lowering of \[0.680\],then molecular formula of sulphur is:
(A)\[{S_2}\]
(B)\[{S_4}\]
(C)\[{S_6}\]
(D)\[{S_8}\
Answer
466.5k+ views
Hint: We know that the freezing point lowering can be determined by the specific formula that is the depression in freezing point due to the addition of non-volatile solute in the volatile solvent.
Complete Step by step answer:To decide the solvent and solute in the given question we know that the one which is higher in amount is solvent and the one which is lesser in amount is solute. It seems clear that the non-volatile solute is sulphur and the volatile solvent is naphthalene. To find the molecular formula of the sulphur, the molecular weight is needed for that the substitution of all the given values will lead us to find the molecular mass.
Now, let’s find the mass to choose the correct option.
As we know that,
\[\Delta {T_f} = {K_f}.m\]
\[{K_f} = \]molal depression constant or Cryoscopic constant.
\[
m = \;molality{\rm{ }}of{\rm{ }}solution\;\\
m = \dfrac{{molecular\;mass\;of\;solute}}{{mass\;of\;solute}} \times \dfrac{{1000}}{{mass\;of\;solvent(in\;gm)}}
\]
Mass of dissolved sulphur (solute)\[ = 25.6g\].
Mass of solvent (Naphthalene)\[ = 100g\].
Depression in freezing point\[ = 0.68\]℃.
Molecular mass of solute=M (Assumed)
Substituting in the known formula:
\[\Delta {T_f} = {K_f}.m\]
\[
{\therefore 0.68 = 6.8 \times \left( {\dfrac{{25.6}}{M} \times \dfrac{{1000}}{{1000}}} \right)}\\
{ \Rightarrow M = 256}
\]
Therefore, Molecular Mass of Sulphur \[ = {\rm{ 32}}\;g\]
So, the number of sulphur atoms present in a formula is calculated as shown below.
$\dfrac{{256\;{\rm{g}}}}{{32\;{\rm{g}}}} = 8$
Hence, the formula of sulphur \[ = \;{S_8}\]
Therefore, the correct answer is (D) that is \[{S_8}\].
Note: The value of solute and solvent should be selected from the question in the appropriate way. The molar mass is calculated by using the molality from the formula of depression in freezing point.
Complete Step by step answer:To decide the solvent and solute in the given question we know that the one which is higher in amount is solvent and the one which is lesser in amount is solute. It seems clear that the non-volatile solute is sulphur and the volatile solvent is naphthalene. To find the molecular formula of the sulphur, the molecular weight is needed for that the substitution of all the given values will lead us to find the molecular mass.
Now, let’s find the mass to choose the correct option.
As we know that,
\[\Delta {T_f} = {K_f}.m\]
\[{K_f} = \]molal depression constant or Cryoscopic constant.
\[
m = \;molality{\rm{ }}of{\rm{ }}solution\;\\
m = \dfrac{{molecular\;mass\;of\;solute}}{{mass\;of\;solute}} \times \dfrac{{1000}}{{mass\;of\;solvent(in\;gm)}}
\]
Mass of dissolved sulphur (solute)\[ = 25.6g\].
Mass of solvent (Naphthalene)\[ = 100g\].
Depression in freezing point\[ = 0.68\]℃.
Molecular mass of solute=M (Assumed)
Substituting in the known formula:
\[\Delta {T_f} = {K_f}.m\]
\[
{\therefore 0.68 = 6.8 \times \left( {\dfrac{{25.6}}{M} \times \dfrac{{1000}}{{1000}}} \right)}\\
{ \Rightarrow M = 256}
\]
Therefore, Molecular Mass of Sulphur \[ = {\rm{ 32}}\;g\]
So, the number of sulphur atoms present in a formula is calculated as shown below.
$\dfrac{{256\;{\rm{g}}}}{{32\;{\rm{g}}}} = 8$
Hence, the formula of sulphur \[ = \;{S_8}\]
Therefore, the correct answer is (D) that is \[{S_8}\].
Note: The value of solute and solvent should be selected from the question in the appropriate way. The molar mass is calculated by using the molality from the formula of depression in freezing point.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

How many valence electrons does nitrogen have class 11 chemistry CBSE
