
A simple microscope consists of a concave lens of power $10D$ and a convex lens of power $15D$ . Its magnification at near point is
(least distance of distinct vision, $D = 25cm$ )
Answer
502.8k+ views
Hint: In order to this question, to calculate the magnification, we will find the focal length of the concave lens of the microscope and then the focal length of the convex lens. And then we will find the actual focal length of the simple microscope, now we can find its magnification.
Complete step-by-step solution:
The power of both the lenses is given, then we will find the focal lengths of both the lenses first.
So, the power of a concave lens is $10D$ .
Focal length of the concave lens, $f = - \dfrac{{100}}{{10}} = - 10cm$
And, the power of a convex lens is $15D$ .
Focal length of the convex lens $ = \dfrac{{100}}{{15}} = 6.67cm$ .
Now, using
$
\dfrac{1}{f} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}} \\
\Rightarrow \dfrac{1}{f} = \dfrac{1}{{10}} + \dfrac{1}{{6.67}} \\
\Rightarrow f = \dfrac{{6.67 \times 10}}{{10 - 6.67}} = 20cm \\
$
Now, we can find the magnification at the near point, as we have focal lengths of both the lenses.
$
\therefore m = 1 + \dfrac{D}{F} \\
\,\,\,\,\,\,\,\, = 1 + \dfrac{{25}}{{20}} = 2.25 \\
$
So, the magnification of the microscope is $2.25$ .
Note: The field of view refers to the amount of your specimen or object that can be seen through the microscope. You can see 5mm at a magnification of $40x$ . You can see $2mm$ at a magnification of $100x$ . At $400x$ magnification, \[0.45mm,{\text{ }}or{\text{ }}450{\text{ }}microns\] , can be seen. At $1000x$ magnification, \[0.180mm,{\text{ }}or{\text{ }}180{\text{ }}microns\] , can be seen.
Complete step-by-step solution:
The power of both the lenses is given, then we will find the focal lengths of both the lenses first.
So, the power of a concave lens is $10D$ .
Focal length of the concave lens, $f = - \dfrac{{100}}{{10}} = - 10cm$
And, the power of a convex lens is $15D$ .
Focal length of the convex lens $ = \dfrac{{100}}{{15}} = 6.67cm$ .
Now, using
$
\dfrac{1}{f} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}} \\
\Rightarrow \dfrac{1}{f} = \dfrac{1}{{10}} + \dfrac{1}{{6.67}} \\
\Rightarrow f = \dfrac{{6.67 \times 10}}{{10 - 6.67}} = 20cm \\
$
Now, we can find the magnification at the near point, as we have focal lengths of both the lenses.
$
\therefore m = 1 + \dfrac{D}{F} \\
\,\,\,\,\,\,\,\, = 1 + \dfrac{{25}}{{20}} = 2.25 \\
$
So, the magnification of the microscope is $2.25$ .
Note: The field of view refers to the amount of your specimen or object that can be seen through the microscope. You can see 5mm at a magnification of $40x$ . You can see $2mm$ at a magnification of $100x$ . At $400x$ magnification, \[0.45mm,{\text{ }}or{\text{ }}450{\text{ }}microns\] , can be seen. At $1000x$ magnification, \[0.180mm,{\text{ }}or{\text{ }}180{\text{ }}microns\] , can be seen.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

