Answer

Verified

448.5k+ views

**Hint:**

We have two linear expressions for one for mean and other for standard deviation. Mean\[({x_i} + \lambda ) = \overline x + \lambda \], standard deviation \[({x_i} + \lambda )\] remains the same. Think about how change in one quantity, i.e. mean, variance or standard deviation, will affect the others and form your calculations based on that.

**Complete step by step solution:**

weighted mean of each fish is 30

Standard deviation is 2 and error in measuring weight is 2 gm

Steps 1 Let’s suppose the weight of fish is given by${x_i}$, where i= 1,2,3,4…

Calculate the mean

Mean of the 30 fishes is given by \[\overline x \]

\overline x = \dfrac{{{x_1} + {x_2} + {x_3} + ... + {x_{30}}}}{{30}} = 30 \\

\overline x = {x_1} + {x_2} + {x_3} + ... + {x_{30}} = 900 \\

Step 2 Calculate the Standard deviation

\[\sigma = \sqrt {\dfrac{{\sum x_i^2}}{n} - \overline x } \]

Step 3 Calculate the new mean after noted corrected weight

\[\overline x = \dfrac{{{x_1} + 2 + {x_2} + 2 + {x_3} + 2 + ... + {x_{30}} + 2}}{{30}} = \dfrac{{\sum {x_i} + 60}}{{30}} = 30 + 2 = 32\]

Step 4 Calculate the new standard deviation

\[\begin{gathered}

\sigma = \sqrt {\dfrac{{\sum x_i^2}}{n} - \overline x } \\

\Rightarrow 2 = \sqrt {\dfrac{{\sum x_i^2}}{{30}} - 30} \\

\Rightarrow \sum x_i^2 = 904 \\

\end{gathered} \]

But new weight is given by \[{x_i} + 2\]

$\begin{gathered}

{\sigma _{new}} = \sqrt {\dfrac{{\sum {{\left( {{x_i} + 2} \right)}^2}}}{n} - \overline x } \\

= \sqrt {\dfrac{{\sum x_i^2 + 4 + 2{x_i}}}{n} - \overline x } \\

= \sqrt {904 + 4 + 120 - {{32}^2}} \\

= 2 \\

\end{gathered} $

Hence ${\sigma _{new}} = 2$ and ${\mu _{new}} = 32$

**Note:**

Note that standard deviation and variation are not changed when each number is either increased or decreased by some constant number. But when each variable is multiplied by constant$\lambda $, the new standard deviation and variation change. Mean, variance and standard deviations are the basic fundamentals of statistics and students need to be familiar with the concepts. They also need to memorize the formulas of mean, variance and standard deviation. Also learn about how changes in one of mean, variance or standard deviation can affect the others.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

How do you graph the function fx 4x class 9 maths CBSE

Difference Between Plant Cell and Animal Cell

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

What organs are located on the left side of your body class 11 biology CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE