Answer
Verified
437.1k+ views
Hint: The above question is based on Boyle's law. Pressure and volume are inversely proportional to each other and their product is constant. Pressure of air can be calculated by subtracting vapor pressure from total pressure given.
Formula used:
\[{{\text{P}}_1}{{\text{V}}_1} = {{\text{P}}_2}{{\text{V}}_2}\]
where ${{\text{P}}_{\text{1}}}{\text{ and }}{{\text{P}}_{\text{2}}}$ are initial and final pressures and ${{\text{V}}_{\text{1}}}{\text{ and }}{{\text{V}}_{\text{2}}}$ are initial and final volumes.
Complete step by step answer:
The above question is based on Boyle’s law of gaseous mixture. It states that pressure applied to a gas is inversely proportional to its volume at constant temperature and number of moles.
Since in the question we have been given that the process is isothermal, that no change in temperature is occurring during the reaction and variation of pressure with the number of moles is given. Hence the given conditions fit with Boyle’s law.
The problem is total pressure is given to us instead of pressure of air. Air also contains benzene vapors, so total pressure is equal to the pressure by benzene vapor and pressure by air.
\[{\text{Total pressure }} = {\text{ vapor pressure of benzene }} + {\text{pressure of air}}\]
\[{\text{pressure of air}} = {\text{Total pressure }} - {\text{vapor pressure of benzene}}\]]
All the values are given to us; hence we will substitute the values:
\[{\text{pressure of air}} = {\text{Total pressure }} - {\text{vapor pressure of benzene}}\]
\[ \Rightarrow {\text{pressure of air}} = ({\text{750}} - 100){\text{ mm Hg}} = {\text{ 650mm Hg}}\]
Let the initial volume is V and we have calculated the initial pressure. It is given to us that the final volume reduces to one third so final volume will be \[\dfrac{{\text{V}}}{3}\].
Substituting the values in the given formula:
\[{\text{650 mm Hg}} \times {\text{V}} = \dfrac{{\text{V}}}{3} \times {{\text{P}}_2}\]
Rearranging the above equation, we will calculate the final pressure as:
\[{{\text{P}}_2} = 1950{\text{ mm Hg}}\]
But benzene is still present in air so we need to add its vapor pressure too. So the final pressure will be \[(1950 + 100{\text{ )mm Hg}} = 2050\,{\text{mm Hg}}\]
The correct option is C.
Note:
Boyle's law only obeys when the temperature and number of moles remain constant if any one of them changes then the equation for Boyle’s law will also change. The one which will change will move to the denominator on either side of the equation.
Formula used:
\[{{\text{P}}_1}{{\text{V}}_1} = {{\text{P}}_2}{{\text{V}}_2}\]
where ${{\text{P}}_{\text{1}}}{\text{ and }}{{\text{P}}_{\text{2}}}$ are initial and final pressures and ${{\text{V}}_{\text{1}}}{\text{ and }}{{\text{V}}_{\text{2}}}$ are initial and final volumes.
Complete step by step answer:
The above question is based on Boyle’s law of gaseous mixture. It states that pressure applied to a gas is inversely proportional to its volume at constant temperature and number of moles.
Since in the question we have been given that the process is isothermal, that no change in temperature is occurring during the reaction and variation of pressure with the number of moles is given. Hence the given conditions fit with Boyle’s law.
The problem is total pressure is given to us instead of pressure of air. Air also contains benzene vapors, so total pressure is equal to the pressure by benzene vapor and pressure by air.
\[{\text{Total pressure }} = {\text{ vapor pressure of benzene }} + {\text{pressure of air}}\]
\[{\text{pressure of air}} = {\text{Total pressure }} - {\text{vapor pressure of benzene}}\]]
All the values are given to us; hence we will substitute the values:
\[{\text{pressure of air}} = {\text{Total pressure }} - {\text{vapor pressure of benzene}}\]
\[ \Rightarrow {\text{pressure of air}} = ({\text{750}} - 100){\text{ mm Hg}} = {\text{ 650mm Hg}}\]
Let the initial volume is V and we have calculated the initial pressure. It is given to us that the final volume reduces to one third so final volume will be \[\dfrac{{\text{V}}}{3}\].
Substituting the values in the given formula:
\[{\text{650 mm Hg}} \times {\text{V}} = \dfrac{{\text{V}}}{3} \times {{\text{P}}_2}\]
Rearranging the above equation, we will calculate the final pressure as:
\[{{\text{P}}_2} = 1950{\text{ mm Hg}}\]
But benzene is still present in air so we need to add its vapor pressure too. So the final pressure will be \[(1950 + 100{\text{ )mm Hg}} = 2050\,{\text{mm Hg}}\]
The correct option is C.
Note:
Boyle's law only obeys when the temperature and number of moles remain constant if any one of them changes then the equation for Boyle’s law will also change. The one which will change will move to the denominator on either side of the equation.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
If the range of a function is a singleton set then class 12 maths CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE