
A sample $^{131}{I_{53}}$, as iodine ion, was administered to a patient in a carrier consisting of $0.10{\text{ }}mg$ of stable iodide ions. After $4$ days, $66.67\% $ of the initial radioactivity was detected in the thyroid gland of the patient. What mass of the stable iodide ion had migrated to the thyroid gland? (${t_{1/2}} = 8\,days$)
A) $0.0958\,mg$
B) $0.958\,mg$
C) $9.58\,mg$
D) None of these
Answer
565.5k+ views
Hint: Activity in a radioactive reaction is the decay of unstable nuclei per second or it can be referred to as the rate of decay for that radioactive reaction.
-As we know the radioactive decay is a type of first order reaction this question can be solved by using the same formula and method used to calculate the activity for simple non-radioactive chemical reactions of first order.
Formula Used:
$\lambda = \dfrac{{2.303}}{t}\log \dfrac{{{N_0}}}{N}$
Here $\lambda $ is the rate of decay
${N_0}$is initial value of unstable nuclei
$N$ is the value of unstable nuclei after time $t$
Also, for a first order reaction
$\lambda = \dfrac{{0.693}}{{{t_{1/2}}}}$
Here ${t_{1/2}}$ is the time for the unstable nuclei to decay by $50\% $ of their initial value
Complete step by step solution:
Now for the given question ${t_{1/2}}$ for iodide ion is given as eight days using that in the following formula we can calculate the decay for iodine ion as follow
$\lambda = \dfrac{{0.693}}{{{t_{1/2}}}}$
$\lambda = \dfrac{{0.693}}{8}$ (i)
Also
$\lambda = \dfrac{{2.303}}{t}\log \dfrac{{{N_0}}}{N}$ (ii)
Here $t$ is given as $4$ days
Equating both the equations (i) and (ii)
We get
$\dfrac{{0.693}}{8} = \dfrac{{2.303}}{t}\log \dfrac{{{N_0}}}{N}$
$\dfrac{N}{{{N_0}_{}}} = 0.707$
This means that $70.7\% $ of the initial number of unstable nuclei are present.
While $66.67\% $ of the initial radioactivity was detected in the thyroid gland of the patient
Hence Weight of iodine migrated to the thyroid gland is $\dfrac{{66.67}}{{70.7}} \times 0.1\,mg$
This comes out as $0.0958\,mg$
Hence the option ‘A’ is the correct solution for the given question.
Note:
$^{131}{I_{53}}$ is an isotope of iodine that emits radiation. When a small dose of $I - 131$ is swallowed, it is absorbed into the bloodstream in the gastrointestinal (GI) tract and concentrated from the blood by the thyroid gland, where it begins destroying the gland's cells
Thyroid is a disease caused due to deficiency of iodine in the human body.
-As we know the radioactive decay is a type of first order reaction this question can be solved by using the same formula and method used to calculate the activity for simple non-radioactive chemical reactions of first order.
Formula Used:
$\lambda = \dfrac{{2.303}}{t}\log \dfrac{{{N_0}}}{N}$
Here $\lambda $ is the rate of decay
${N_0}$is initial value of unstable nuclei
$N$ is the value of unstable nuclei after time $t$
Also, for a first order reaction
$\lambda = \dfrac{{0.693}}{{{t_{1/2}}}}$
Here ${t_{1/2}}$ is the time for the unstable nuclei to decay by $50\% $ of their initial value
Complete step by step solution:
Now for the given question ${t_{1/2}}$ for iodide ion is given as eight days using that in the following formula we can calculate the decay for iodine ion as follow
$\lambda = \dfrac{{0.693}}{{{t_{1/2}}}}$
$\lambda = \dfrac{{0.693}}{8}$ (i)
Also
$\lambda = \dfrac{{2.303}}{t}\log \dfrac{{{N_0}}}{N}$ (ii)
Here $t$ is given as $4$ days
Equating both the equations (i) and (ii)
We get
$\dfrac{{0.693}}{8} = \dfrac{{2.303}}{t}\log \dfrac{{{N_0}}}{N}$
$\dfrac{N}{{{N_0}_{}}} = 0.707$
This means that $70.7\% $ of the initial number of unstable nuclei are present.
While $66.67\% $ of the initial radioactivity was detected in the thyroid gland of the patient
Hence Weight of iodine migrated to the thyroid gland is $\dfrac{{66.67}}{{70.7}} \times 0.1\,mg$
This comes out as $0.0958\,mg$
Hence the option ‘A’ is the correct solution for the given question.
Note:
$^{131}{I_{53}}$ is an isotope of iodine that emits radiation. When a small dose of $I - 131$ is swallowed, it is absorbed into the bloodstream in the gastrointestinal (GI) tract and concentrated from the blood by the thyroid gland, where it begins destroying the gland's cells
Thyroid is a disease caused due to deficiency of iodine in the human body.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

