
A right cylinder, a right cone and a hemisphere have the same height and the same base area. Then the ratio of their volumes is:
A. $2:1:4$
B. $1:2:3$
C. $3:1:2$
D. $1:3:2$
Answer
482.7k+ views
Hint:In this question, we know volume of the cylinder, cone and the hemisphere formulas that is $\pi {r^2}h,\dfrac{1}{3}\pi {r^2}h,\dfrac{2}{3}\pi {r^3}$ respectively. Then we take their ratio and use the given information of the same height and the same base area and calculate the ratio of their volumes.
Complete step-by-step answer:
We are given the cylinder, cone and the hemisphere having the same base area and height. So consider one cylinder, cone and the hemisphere. The base area of the cylinder with radius $r$ is $\pi {r^2}$.
So the base area of the cone and the hemisphere is also $\pi {r^2}$. Now let the height of the cylinder be $h$
Then the height of the cone is also \[h\].
Now we know that the height of the hemisphere is also the radius of the hemisphere.
So we can say that \[h = r\]$ - - - - - \left( 1 \right)$
Now taking volume of the cylinder: volume of the cone: volume of the hemisphere
We know that the volume of the cylinder, cone and the hemisphere that is $\pi {r^2}h,\dfrac{1}{3}\pi {r^2}h,\dfrac{2}{3}\pi {r^3}$ respectively.
So $\pi {r^2}h:\dfrac{1}{3}\pi {r^2}h:\dfrac{2}{3}\pi {r^3}$
Now using (1) we get,
$1:\dfrac{1}{3}:\dfrac{2}{3}$
Multiplying 3 in above ratios we get,
$3:1:2$
So the ratio is $3:1:2$
So, the correct answer is “Option C”.
Note:The tricky part of this question is to know that height of the hemisphere is also the radius of the hemisphere. And from this point, we get all the shapes.Students should remember formulas of volume of cone , cylinder and hemisphere to solve these types of questions.
Complete step-by-step answer:
We are given the cylinder, cone and the hemisphere having the same base area and height. So consider one cylinder, cone and the hemisphere. The base area of the cylinder with radius $r$ is $\pi {r^2}$.
So the base area of the cone and the hemisphere is also $\pi {r^2}$. Now let the height of the cylinder be $h$
Then the height of the cone is also \[h\].
Now we know that the height of the hemisphere is also the radius of the hemisphere.
So we can say that \[h = r\]$ - - - - - \left( 1 \right)$
Now taking volume of the cylinder: volume of the cone: volume of the hemisphere
We know that the volume of the cylinder, cone and the hemisphere that is $\pi {r^2}h,\dfrac{1}{3}\pi {r^2}h,\dfrac{2}{3}\pi {r^3}$ respectively.
So $\pi {r^2}h:\dfrac{1}{3}\pi {r^2}h:\dfrac{2}{3}\pi {r^3}$
Now using (1) we get,
$1:\dfrac{1}{3}:\dfrac{2}{3}$
Multiplying 3 in above ratios we get,
$3:1:2$
So the ratio is $3:1:2$
So, the correct answer is “Option C”.
Note:The tricky part of this question is to know that height of the hemisphere is also the radius of the hemisphere. And from this point, we get all the shapes.Students should remember formulas of volume of cone , cylinder and hemisphere to solve these types of questions.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Define least count of vernier callipers How do you class 11 physics CBSE

The combining capacity of an element is known as i class 11 chemistry CBSE
