Answer
Verified
389.7k+ views
Hint:Concave mirror is a mirror of spherical; surface whose reflecting part is bent inwards and convex mirror is also a spherical mirror whose reflecting surface is bent outwards. A plane mirror is one who’s reflecting surface is a plane surface.
Complete step by step answer:
Let us examine the concave mirror first. It’s given that the position of the object is the centre of curvature which means $u = - R$ where $R$ is the radius of curvature of a spherical concave mirror. Focal length of a concave mirror is always negative let’s say,
$f = \dfrac{{ - R}}{2}$
Now Let us find the image distance in this case using the mirror formula we have,
$\dfrac{1}{f} = \dfrac{1}{v} + \dfrac{1}{u}$
Putting the values of $f = \dfrac{{ - R}}{2}$ and $u = - R$ in this equation:
$\dfrac{{ - 2}}{R} = \dfrac{1}{v} - \dfrac{1}{R}$
$\Rightarrow \dfrac{{ - 2}}{R} + \dfrac{1}{R} = \dfrac{1}{v}$
$\therefore v = - R$
From above calculation, we get to know that if an object is placed at centre of curvature of a concave mirror its image forms at centre of curvature and hence also of same size due to the fact that magnification is equals to one as: $m = \dfrac{{ - R}}{R} = - 1$ which shows image is formed of same size but real and inverted.
Hence, the correct option is A.
Note:It is to be remembered that by the new Cartesian sign convention any distances measured from left of the pole of a spherical mirror is taken as negative while distances measured to the right of pole is taken as positive. And in spherical mirrors the relation between focal length and radius of the spherical surface is fixed which is $f = \dfrac{R}{2}$.
Complete step by step answer:
Let us examine the concave mirror first. It’s given that the position of the object is the centre of curvature which means $u = - R$ where $R$ is the radius of curvature of a spherical concave mirror. Focal length of a concave mirror is always negative let’s say,
$f = \dfrac{{ - R}}{2}$
Now Let us find the image distance in this case using the mirror formula we have,
$\dfrac{1}{f} = \dfrac{1}{v} + \dfrac{1}{u}$
Putting the values of $f = \dfrac{{ - R}}{2}$ and $u = - R$ in this equation:
$\dfrac{{ - 2}}{R} = \dfrac{1}{v} - \dfrac{1}{R}$
$\Rightarrow \dfrac{{ - 2}}{R} + \dfrac{1}{R} = \dfrac{1}{v}$
$\therefore v = - R$
From above calculation, we get to know that if an object is placed at centre of curvature of a concave mirror its image forms at centre of curvature and hence also of same size due to the fact that magnification is equals to one as: $m = \dfrac{{ - R}}{R} = - 1$ which shows image is formed of same size but real and inverted.
Hence, the correct option is A.
Note:It is to be remembered that by the new Cartesian sign convention any distances measured from left of the pole of a spherical mirror is taken as negative while distances measured to the right of pole is taken as positive. And in spherical mirrors the relation between focal length and radius of the spherical surface is fixed which is $f = \dfrac{R}{2}$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE