Answer
Verified
455.7k+ views
Hint: Use work-energy theorem for the raindrop. The expression for this theorem gives the relation between the change in kinetic energy of the raindrop and the total work done by all the forces on the raindrop
Formula used:
The expression for the kinetic energy of an object is
\[K = \dfrac{1}{2}m{v^2}\] …… (1)
Here, \[K\] is the kinetic energy of the object, \[m\] is the mass of the object and \[v\] is the velocity of the object.
The expression for the potential energy of an object is
\[U = mgh\] …… (2)
Here, \[U\] is the potential energy of the object, \[m\] is the mass of the object, \[g\] is the acceleration due to gravity and \[h\] is the height of the object from the ground.
The expression for the work-energy theorem is
\[W = \Delta K\] …… (3)
Here, \[W\] is the work done by an object and \[\Delta K\] is the change in the kinetic energy of the object
Complete step by step answer:
The raindrop has mass \[1\,{\text{g}}\] and it is falling from a height of \[1\,{\text{km}}\] hits the ground with a speed \[50\,{\text{m}} \cdot {{\text{s}}^{ - 1}}\].
The initial speed of the raindrop at height \[1\,{\text{km}}\] is zero as it has zero kinetic energy at the maximum height.
Calculate the change in kinetic energy of the raindrop during its travel.
Rewrite equation (1) for the initial and final kinetic energies of the raindrop at maximum height and the ground.
\[{K_i} = \dfrac{1}{2}m{u^2}\]
Here, \[{K_i}\] is the initial kinetic energy of the raindrop, \[m\] is the mass of the raindrop and \[u\] is the initial speed of the raindrop at maximum height.
\[{K_f} = \dfrac{1}{2}m{v^2}\]
Here, \[{K_f}\] is the final kinetic energy of the raindrop and \[v\] is the final speed of the raindrop when it just touches the ground.
The change in the kinetic energy \[\Delta K\] of the raindrop is the subtraction of the initial and final kinetic energies of the raindrop.
\[\Delta K = {K_i} - {K_f}\]
Substitute \[\dfrac{1}{2}m{u^2}\] for \[{K_i}\] and \[\dfrac{1}{2}m{v^2}\] for \[{K_f}\] in the above equation.
\[\Delta K = \dfrac{1}{2}m{v^2} - \dfrac{1}{2}m{v^2}\]
\[ \Rightarrow \Delta K = \dfrac{1}{2}m\left( {{u^2} - {v^2}} \right)\]
Substitute \[{\text{1}}\,{\text{g}}\] for \[m\], \[0\,{\text{m}} \cdot {{\text{s}}^{ - 1}}\] for \[u\] and \[50\,{\text{m}} \cdot {{\text{s}}^{ - 1}}\] for \[v\] in the above equation.
\[ \Rightarrow \Delta K = \dfrac{1}{2}\left( {{\text{1}}\,{\text{g}}} \right)\left[ {{{\left( {0\,{\text{m}} \cdot {{\text{s}}^{ - 1}}} \right)}^2} - {{\left( {50\,{\text{m}} \cdot {{\text{s}}^{ - 1}}} \right)}^2}} \right]\]
\[ \Rightarrow \Delta K = \dfrac{1}{2}\left( {{\text{1}} \times {\text{1}}{{\text{0}}^{ - 3}}\,{\text{kg}}} \right)\left[ { - {{\left( {50\,{\text{m}} \cdot {{\text{s}}^{ - 1}}} \right)}^2}} \right]\]
\[ \Rightarrow \Delta K = - 1.25\,{\text{J}}\]
Hence, the change in kinetic energy of the raindrop during its travel is \[ - 1.25\,{\text{J}}\].
The total work done on the raindrop is the sum of the work done by the gravitational force and the work done by the resistive force.
The work done by the gravitational force on the raindrop is equal to the potential energy of the raindrop at its maximum height.
Calculate the work done \[{W_g}\] by the gravitational force on the raindrop.
Substitute \[{W_g}\] for \[U\] in equation (2).
\[{W_g} = mgh\]
Substitute \[{\text{1}}\,{\text{g}}\] for \[m\], \[10\,{\text{m}} \cdot {{\text{s}}^{ - 2}}\] for \[g\] and \[1\,{\text{km}}\] for \[h\] in equation (2).
\[{W_g} = \left( {{\text{1}}\,{\text{g}}} \right)\left( {10\,{\text{m}} \cdot {{\text{s}}^{ - 2}}} \right)\left( {1\,{\text{km}}} \right)\]
\[ \Rightarrow {W_g} = \left( {{\text{1}} \times {\text{1}}{{\text{0}}^{ - 3}}\,{\text{kg}}} \right)\left( {10\,{\text{m}} \cdot {{\text{s}}^{ - 2}}} \right)\left( {1 \times {\text{1}}{{\text{0}}^3}\,{\text{m}}} \right)\]
\[ \Rightarrow {W_g} = 10\,{\text{J}}\]
Hence, the work done by the gravitational force on the raindrop is \[10\,{\text{J}}\].
Now, calculate the work done by the resistive force.
According to the work-energy theorem, the change in the kinetic energy of the raindrop is equal to the total work done on the raindrop by the resistive force and the gravitational force.
\[{W_r} + {W_g} = \Delta K\]
Here, \[{W_r}\] is the work done by the resistive force.
Rearrange the above equation for \[{W_r}\].
\[{W_r} = \Delta K - {W_g}\]
Substitute \[1.25\,{\text{J}}\] for \[\Delta K\] and \[10\,{\text{J}}\] for \[{W_g}\] in the above equation.
\[{W_r} = \left( {1.25\,{\text{J}}} \right) - \left( {10\,{\text{J}}} \right)\]
\[{W_r} = - 8.75\,{\text{J}}\]
Hence, the work done by the resistive force on the raindrop is \[ - 8.75\,{\text{J}}\].
So, the correct answer is “Option D”.
Note:
The negative sign of the work done by the resistive force on the raindrop indicates that the resistive force on the raindrop is in the opposite direction as that of the gravitational force on the raindrop.
Formula used:
The expression for the kinetic energy of an object is
\[K = \dfrac{1}{2}m{v^2}\] …… (1)
Here, \[K\] is the kinetic energy of the object, \[m\] is the mass of the object and \[v\] is the velocity of the object.
The expression for the potential energy of an object is
\[U = mgh\] …… (2)
Here, \[U\] is the potential energy of the object, \[m\] is the mass of the object, \[g\] is the acceleration due to gravity and \[h\] is the height of the object from the ground.
The expression for the work-energy theorem is
\[W = \Delta K\] …… (3)
Here, \[W\] is the work done by an object and \[\Delta K\] is the change in the kinetic energy of the object
Complete step by step answer:
The raindrop has mass \[1\,{\text{g}}\] and it is falling from a height of \[1\,{\text{km}}\] hits the ground with a speed \[50\,{\text{m}} \cdot {{\text{s}}^{ - 1}}\].
The initial speed of the raindrop at height \[1\,{\text{km}}\] is zero as it has zero kinetic energy at the maximum height.
Calculate the change in kinetic energy of the raindrop during its travel.
Rewrite equation (1) for the initial and final kinetic energies of the raindrop at maximum height and the ground.
\[{K_i} = \dfrac{1}{2}m{u^2}\]
Here, \[{K_i}\] is the initial kinetic energy of the raindrop, \[m\] is the mass of the raindrop and \[u\] is the initial speed of the raindrop at maximum height.
\[{K_f} = \dfrac{1}{2}m{v^2}\]
Here, \[{K_f}\] is the final kinetic energy of the raindrop and \[v\] is the final speed of the raindrop when it just touches the ground.
The change in the kinetic energy \[\Delta K\] of the raindrop is the subtraction of the initial and final kinetic energies of the raindrop.
\[\Delta K = {K_i} - {K_f}\]
Substitute \[\dfrac{1}{2}m{u^2}\] for \[{K_i}\] and \[\dfrac{1}{2}m{v^2}\] for \[{K_f}\] in the above equation.
\[\Delta K = \dfrac{1}{2}m{v^2} - \dfrac{1}{2}m{v^2}\]
\[ \Rightarrow \Delta K = \dfrac{1}{2}m\left( {{u^2} - {v^2}} \right)\]
Substitute \[{\text{1}}\,{\text{g}}\] for \[m\], \[0\,{\text{m}} \cdot {{\text{s}}^{ - 1}}\] for \[u\] and \[50\,{\text{m}} \cdot {{\text{s}}^{ - 1}}\] for \[v\] in the above equation.
\[ \Rightarrow \Delta K = \dfrac{1}{2}\left( {{\text{1}}\,{\text{g}}} \right)\left[ {{{\left( {0\,{\text{m}} \cdot {{\text{s}}^{ - 1}}} \right)}^2} - {{\left( {50\,{\text{m}} \cdot {{\text{s}}^{ - 1}}} \right)}^2}} \right]\]
\[ \Rightarrow \Delta K = \dfrac{1}{2}\left( {{\text{1}} \times {\text{1}}{{\text{0}}^{ - 3}}\,{\text{kg}}} \right)\left[ { - {{\left( {50\,{\text{m}} \cdot {{\text{s}}^{ - 1}}} \right)}^2}} \right]\]
\[ \Rightarrow \Delta K = - 1.25\,{\text{J}}\]
Hence, the change in kinetic energy of the raindrop during its travel is \[ - 1.25\,{\text{J}}\].
The total work done on the raindrop is the sum of the work done by the gravitational force and the work done by the resistive force.
The work done by the gravitational force on the raindrop is equal to the potential energy of the raindrop at its maximum height.
Calculate the work done \[{W_g}\] by the gravitational force on the raindrop.
Substitute \[{W_g}\] for \[U\] in equation (2).
\[{W_g} = mgh\]
Substitute \[{\text{1}}\,{\text{g}}\] for \[m\], \[10\,{\text{m}} \cdot {{\text{s}}^{ - 2}}\] for \[g\] and \[1\,{\text{km}}\] for \[h\] in equation (2).
\[{W_g} = \left( {{\text{1}}\,{\text{g}}} \right)\left( {10\,{\text{m}} \cdot {{\text{s}}^{ - 2}}} \right)\left( {1\,{\text{km}}} \right)\]
\[ \Rightarrow {W_g} = \left( {{\text{1}} \times {\text{1}}{{\text{0}}^{ - 3}}\,{\text{kg}}} \right)\left( {10\,{\text{m}} \cdot {{\text{s}}^{ - 2}}} \right)\left( {1 \times {\text{1}}{{\text{0}}^3}\,{\text{m}}} \right)\]
\[ \Rightarrow {W_g} = 10\,{\text{J}}\]
Hence, the work done by the gravitational force on the raindrop is \[10\,{\text{J}}\].
Now, calculate the work done by the resistive force.
According to the work-energy theorem, the change in the kinetic energy of the raindrop is equal to the total work done on the raindrop by the resistive force and the gravitational force.
\[{W_r} + {W_g} = \Delta K\]
Here, \[{W_r}\] is the work done by the resistive force.
Rearrange the above equation for \[{W_r}\].
\[{W_r} = \Delta K - {W_g}\]
Substitute \[1.25\,{\text{J}}\] for \[\Delta K\] and \[10\,{\text{J}}\] for \[{W_g}\] in the above equation.
\[{W_r} = \left( {1.25\,{\text{J}}} \right) - \left( {10\,{\text{J}}} \right)\]
\[{W_r} = - 8.75\,{\text{J}}\]
Hence, the work done by the resistive force on the raindrop is \[ - 8.75\,{\text{J}}\].
So, the correct answer is “Option D”.
Note:
The negative sign of the work done by the resistive force on the raindrop indicates that the resistive force on the raindrop is in the opposite direction as that of the gravitational force on the raindrop.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE