
A point equidistant from the lines 4x+3y+10 = 0, 5x-12y+26 = 0 and 7x+24y-50 = 0 is
[a] (1,-1)
[b] (1,1)
[c] (0,0)
[d] (0,1)
Answer
517.5k+ views
Hint: Assume that the coordinates of the point be P (x,y). Find the distance of P from 4x+3y+10=0, 5x-12y+26=0 and 7x+24y-50 = 0. Let those distances be ${{d}_{1}},{{d}_{2}}$ and ${{d}_{3}}$.
Equate ${{d}_{1}}$ and ${{d}_{2}}$ and form an equation in x and y.
Again equate ${{d}_{2}}$ and ${{d}_{3}}$ and form an equation in x and y.
Solve the system of the equations for x and y.
The value of x and y gives the value of the coordinates of point P. Notice that there should exist four such points which are the centres of the three excircles and one incircle of the triangle formed by these lines.
Complete step-by-step answer:
Let the coordinates of the point be P(x,y).
We know that the distance of the point $P\left( {{x}_{1}},{{y}_{1}} \right)$ from the line $Ax+By+C=0$ is given by $\dfrac{\left| A{{x}_{1}}+B{{y}_{1}}+C \right|}{\sqrt{{{A}^{2}}+{{B}^{2}}}}$
Hence we have
The distance of P from 4x+3y+10 = 0 is ${{d}_{1}}=\dfrac{\left| 4x+3y+10 \right|}{\sqrt{{{3}^{2}}+{{4}^{2}}}}=\dfrac{\left| 4x+3y+10 \right|}{5}$
The distance of P from 5x-12y+26 = 0 is ${{d}_{2}}=\dfrac{\left| 5x-12y+26 \right|}{\sqrt{{{5}^{2}}+{{12}^{2}}}}=\dfrac{\left| 5x-12y+26 \right|}{13}$
The distance of P from 7x+24y-50 = 0 is ${{d}_{3}}=\dfrac{\left| 7x+24y-50 \right|}{\sqrt{{{7}^{2}}+{{24}^{2}}}}=\dfrac{\left| 7x+24y-50 \right|}{25}$
Now we have
${{d}_{1}}={{d}_{2}}$
Hence we get
$\begin{align}
& \dfrac{\left| 4x+3y+10 \right|}{5}=\dfrac{\left| 5x-12y+26 \right|}{13} \\
& \Rightarrow 13\left| 4x+3y+10 \right|=5\left| 5x-12y+26 \right|\text{ (i)} \\
\end{align}$
Also, ${{d}_{1}}={{d}_{3}}$
Hence we get
$\begin{align}
& \dfrac{\left| 4x+3y+10 \right|}{5}=\dfrac{\left| 7x+24y-50 \right|}{25} \\
& \Rightarrow 5\left| 4x+3y+10 \right|=\left| 7x+24y-50 \right|\text{ (ii)} \\
\end{align}$
Now we know that if $a\left| x \right|=b\left| y \right|,a,b>0$ then $ax=\pm by$
Hence equation (i) becomes $13\left( 4x+3y+10 \right)=\pm 5\left( 5x-12y+26 \right)\text{ }$
Taking with + sign, we get
$\begin{align}
& 52x+39y+130=25x-60y+130 \\
& \Rightarrow 27x+99y=0\text{ (A)} \\
\end{align}$
Taking with the – sign, we get
\[\begin{align}
& 52x+39y+130=-25x+60y-130 \\
& \Rightarrow 77x-21y+260=0\text{ (B)} \\
\end{align}\]
Also from equation (ii), we have
\[5\left( 4x+3y+10 \right)=\pm \left( 7x+24y-50 \right)\]
Taking with + sign, we get
$\begin{align}
& 20x+15y+50=7x+24y-50 \\
& \Rightarrow 13x-9y+100=0\text{ (C)} \\
\end{align}$
Taking with the – sign, we get
$\begin{align}
& 20x+15y+50=-7x-24y+50 \\
& \Rightarrow 27x+39y=0\text{ (D)} \\
\end{align}$
Solving system A and C
$\begin{align}
& 27x+99y=0\text{ } \\
& 13x-9y+100=0\text{ } \\
\end{align}$
Multiply equation B by 11 and adding to equation B, we get
$\begin{align}
& 27x+143x+99y-99y+1100=0 \\
& 170x+1100=0 \\
& \Rightarrow x=\dfrac{-110}{17} \\
\end{align}$
Substituting the value of x in equation A, we get
$\begin{align}
& 27\left( \dfrac{-110}{17} \right)+99y=0 \\
& \Rightarrow y=\dfrac{30}{17} \\
\end{align}$
Hence one point is $\left( \dfrac{-110}{17},\dfrac{30}{17} \right)$.
Similarly solving system A and D, we get
$\begin{align}
& 27x+99y=0 \\
& 27x+39y=0 \\
\end{align}$
Subtracting equation D from equation A, we get
$\begin{align}
& 27x-27x+99y-39y=0 \\
& \Rightarrow 60y=0 \\
& \Rightarrow y=0 \\
\end{align}$
Substituting the value of y in equation A, we get
$\begin{align}
& 27x+0=0 \\
& \Rightarrow x=0 \\
\end{align}$
Hence another point is (0,0)
Solving the system B and C, we get
$\begin{align}
& 77x-21y+260=0\text{ } \\
& 13x-9y+100=0\text{ } \\
\end{align}$
Multiplying equation B by 3 and equation C by 7 and adding the two equations, we get
$\begin{align}
& 231x-91x-63x+63x+780-700=0 \\
& \Rightarrow 140x+80=0 \\
& \Rightarrow x=\dfrac{-80}{140}=\dfrac{-4}{7} \\
\end{align}$
Substituting the value of x in equation B, we get
$\begin{align}
& 77\left( \dfrac{-4}{7} \right)-21y+260=0 \\
& \Rightarrow y=\dfrac{72}{7} \\
\end{align}$
Hence another point is $\left( \dfrac{-4}{7},\dfrac{72}{7} \right)$
Solving system B and D, we get
\[\begin{align}
& 77x-21y+260=0\text{ } \\
& 27x+39y=0 \\
\end{align}\]
Multiplying equation B by 13 and equation D by 7 and adding the two equations, we get
$\begin{align}
& 1001x+189x-273y+273y+3380=0 \\
& \Rightarrow 1190x+3380=0 \\
& \Rightarrow x=\dfrac{-3380}{1190}=-\dfrac{338}{119} \\
\end{align}$
Substituting the value of x in equation D, we get
$\begin{align}
& 27\left( \dfrac{-338}{119} \right)+39y=0 \\
& \Rightarrow y=\dfrac{234}{119} \\
\end{align}$
Hence another point is $\left( \dfrac{-338}{119},\dfrac{234}{119} \right)$
Hence the points equidistant from the given lines are $\left( \dfrac{-110}{17},\dfrac{30}{17} \right),\left( 0,0 \right),\left( \dfrac{-4}{7},\dfrac{72}{7} \right)$ and $\left( \dfrac{-338}{119},\dfrac{234}{119} \right)$
Hence option [c] is correct.
Note: Alternative Solution
Find the coordinates of points of intersection of the lines.
Hence find the lengths of the sides of the triangle formed by these lines.
Find the coordinates of incentre by using the formula \[\left( \dfrac{a{{x}_{1}}+b{{x}_{2}}+c{{x}_{3}}}{a+b+c},\dfrac{a{{y}_{1}}+b{{y}_{2}}+c{{y}_{3}}}{a+b+c} \right)\] and find the coordinates of excentres using the formula ${{I}_{1}}\equiv \left( \dfrac{-a{{x}_{1}}+b{{x}_{2}}+c{{x}_{3}}}{-a+b+c},\dfrac{-a{{y}_{1}}+b{{y}_{2}}+c{{y}_{3}}}{-a+b+c} \right),{{I}_{2}}\equiv \left( \dfrac{a{{x}_{1}}-b{{x}_{2}}+c{{x}_{3}}}{a-b+c},\dfrac{a{{y}_{1}}-b{{y}_{2}}+c{{y}_{3}}}{a-b+c} \right)$ and ${{I}_{3}}\equiv \left( \dfrac{a{{x}_{1}}+b{{x}_{2}}-c{{x}_{3}}}{a+b-c},\dfrac{a{{y}_{1}}+b{{y}_{2}}-c{{y}_{3}}}{a+b-c} \right)$, where a is the length of the side opposite to $A\left( {{x}_{1}},{{y}_{1}} \right)$, b is the length of the side opposite to $B\left( {{x}_{2}},{{y}_{2}} \right)$ and c is the length of the side opposite to $C\left( {{x}_{3}},{{y}_{3}} \right)$.
Equate ${{d}_{1}}$ and ${{d}_{2}}$ and form an equation in x and y.
Again equate ${{d}_{2}}$ and ${{d}_{3}}$ and form an equation in x and y.
Solve the system of the equations for x and y.
The value of x and y gives the value of the coordinates of point P. Notice that there should exist four such points which are the centres of the three excircles and one incircle of the triangle formed by these lines.
Complete step-by-step answer:
Let the coordinates of the point be P(x,y).
We know that the distance of the point $P\left( {{x}_{1}},{{y}_{1}} \right)$ from the line $Ax+By+C=0$ is given by $\dfrac{\left| A{{x}_{1}}+B{{y}_{1}}+C \right|}{\sqrt{{{A}^{2}}+{{B}^{2}}}}$
Hence we have
The distance of P from 4x+3y+10 = 0 is ${{d}_{1}}=\dfrac{\left| 4x+3y+10 \right|}{\sqrt{{{3}^{2}}+{{4}^{2}}}}=\dfrac{\left| 4x+3y+10 \right|}{5}$
The distance of P from 5x-12y+26 = 0 is ${{d}_{2}}=\dfrac{\left| 5x-12y+26 \right|}{\sqrt{{{5}^{2}}+{{12}^{2}}}}=\dfrac{\left| 5x-12y+26 \right|}{13}$
The distance of P from 7x+24y-50 = 0 is ${{d}_{3}}=\dfrac{\left| 7x+24y-50 \right|}{\sqrt{{{7}^{2}}+{{24}^{2}}}}=\dfrac{\left| 7x+24y-50 \right|}{25}$
Now we have
${{d}_{1}}={{d}_{2}}$
Hence we get
$\begin{align}
& \dfrac{\left| 4x+3y+10 \right|}{5}=\dfrac{\left| 5x-12y+26 \right|}{13} \\
& \Rightarrow 13\left| 4x+3y+10 \right|=5\left| 5x-12y+26 \right|\text{ (i)} \\
\end{align}$
Also, ${{d}_{1}}={{d}_{3}}$
Hence we get
$\begin{align}
& \dfrac{\left| 4x+3y+10 \right|}{5}=\dfrac{\left| 7x+24y-50 \right|}{25} \\
& \Rightarrow 5\left| 4x+3y+10 \right|=\left| 7x+24y-50 \right|\text{ (ii)} \\
\end{align}$
Now we know that if $a\left| x \right|=b\left| y \right|,a,b>0$ then $ax=\pm by$
Hence equation (i) becomes $13\left( 4x+3y+10 \right)=\pm 5\left( 5x-12y+26 \right)\text{ }$
Taking with + sign, we get
$\begin{align}
& 52x+39y+130=25x-60y+130 \\
& \Rightarrow 27x+99y=0\text{ (A)} \\
\end{align}$
Taking with the – sign, we get
\[\begin{align}
& 52x+39y+130=-25x+60y-130 \\
& \Rightarrow 77x-21y+260=0\text{ (B)} \\
\end{align}\]
Also from equation (ii), we have
\[5\left( 4x+3y+10 \right)=\pm \left( 7x+24y-50 \right)\]
Taking with + sign, we get
$\begin{align}
& 20x+15y+50=7x+24y-50 \\
& \Rightarrow 13x-9y+100=0\text{ (C)} \\
\end{align}$
Taking with the – sign, we get
$\begin{align}
& 20x+15y+50=-7x-24y+50 \\
& \Rightarrow 27x+39y=0\text{ (D)} \\
\end{align}$

Solving system A and C
$\begin{align}
& 27x+99y=0\text{ } \\
& 13x-9y+100=0\text{ } \\
\end{align}$
Multiply equation B by 11 and adding to equation B, we get
$\begin{align}
& 27x+143x+99y-99y+1100=0 \\
& 170x+1100=0 \\
& \Rightarrow x=\dfrac{-110}{17} \\
\end{align}$
Substituting the value of x in equation A, we get
$\begin{align}
& 27\left( \dfrac{-110}{17} \right)+99y=0 \\
& \Rightarrow y=\dfrac{30}{17} \\
\end{align}$
Hence one point is $\left( \dfrac{-110}{17},\dfrac{30}{17} \right)$.
Similarly solving system A and D, we get
$\begin{align}
& 27x+99y=0 \\
& 27x+39y=0 \\
\end{align}$
Subtracting equation D from equation A, we get
$\begin{align}
& 27x-27x+99y-39y=0 \\
& \Rightarrow 60y=0 \\
& \Rightarrow y=0 \\
\end{align}$
Substituting the value of y in equation A, we get
$\begin{align}
& 27x+0=0 \\
& \Rightarrow x=0 \\
\end{align}$
Hence another point is (0,0)
Solving the system B and C, we get
$\begin{align}
& 77x-21y+260=0\text{ } \\
& 13x-9y+100=0\text{ } \\
\end{align}$
Multiplying equation B by 3 and equation C by 7 and adding the two equations, we get
$\begin{align}
& 231x-91x-63x+63x+780-700=0 \\
& \Rightarrow 140x+80=0 \\
& \Rightarrow x=\dfrac{-80}{140}=\dfrac{-4}{7} \\
\end{align}$
Substituting the value of x in equation B, we get
$\begin{align}
& 77\left( \dfrac{-4}{7} \right)-21y+260=0 \\
& \Rightarrow y=\dfrac{72}{7} \\
\end{align}$
Hence another point is $\left( \dfrac{-4}{7},\dfrac{72}{7} \right)$
Solving system B and D, we get
\[\begin{align}
& 77x-21y+260=0\text{ } \\
& 27x+39y=0 \\
\end{align}\]
Multiplying equation B by 13 and equation D by 7 and adding the two equations, we get
$\begin{align}
& 1001x+189x-273y+273y+3380=0 \\
& \Rightarrow 1190x+3380=0 \\
& \Rightarrow x=\dfrac{-3380}{1190}=-\dfrac{338}{119} \\
\end{align}$
Substituting the value of x in equation D, we get
$\begin{align}
& 27\left( \dfrac{-338}{119} \right)+39y=0 \\
& \Rightarrow y=\dfrac{234}{119} \\
\end{align}$
Hence another point is $\left( \dfrac{-338}{119},\dfrac{234}{119} \right)$
Hence the points equidistant from the given lines are $\left( \dfrac{-110}{17},\dfrac{30}{17} \right),\left( 0,0 \right),\left( \dfrac{-4}{7},\dfrac{72}{7} \right)$ and $\left( \dfrac{-338}{119},\dfrac{234}{119} \right)$
Hence option [c] is correct.
Note: Alternative Solution
Find the coordinates of points of intersection of the lines.
Hence find the lengths of the sides of the triangle formed by these lines.
Find the coordinates of incentre by using the formula \[\left( \dfrac{a{{x}_{1}}+b{{x}_{2}}+c{{x}_{3}}}{a+b+c},\dfrac{a{{y}_{1}}+b{{y}_{2}}+c{{y}_{3}}}{a+b+c} \right)\] and find the coordinates of excentres using the formula ${{I}_{1}}\equiv \left( \dfrac{-a{{x}_{1}}+b{{x}_{2}}+c{{x}_{3}}}{-a+b+c},\dfrac{-a{{y}_{1}}+b{{y}_{2}}+c{{y}_{3}}}{-a+b+c} \right),{{I}_{2}}\equiv \left( \dfrac{a{{x}_{1}}-b{{x}_{2}}+c{{x}_{3}}}{a-b+c},\dfrac{a{{y}_{1}}-b{{y}_{2}}+c{{y}_{3}}}{a-b+c} \right)$ and ${{I}_{3}}\equiv \left( \dfrac{a{{x}_{1}}+b{{x}_{2}}-c{{x}_{3}}}{a+b-c},\dfrac{a{{y}_{1}}+b{{y}_{2}}-c{{y}_{3}}}{a+b-c} \right)$, where a is the length of the side opposite to $A\left( {{x}_{1}},{{y}_{1}} \right)$, b is the length of the side opposite to $B\left( {{x}_{2}},{{y}_{2}} \right)$ and c is the length of the side opposite to $C\left( {{x}_{3}},{{y}_{3}} \right)$.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

Most of the Sinhalaspeaking people in Sri Lanka are class 12 social science CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What I want should not be confused with total inactivity class 12 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
