
A plane wave is described by the equation y = 3 cos(x/4-10t-π/2). The maximum velocity of the particles of the medium due to this wave is
A. $30$
B. $\dfrac{{3\pi }}{2}$
C. $\dfrac{3}{4}$
D. $40$
Answer
570.3k+ views
Hint: The maximum velocity of a wave is obtained at its maximum displacement i.e., amplitude. The product of amplitude and angular velocity is the maximum velocity of the particles of the medium.
Complete step by step answer:A simple plane wave is represented by the equation y = a sin(ωt-kx) where y is the displacement of the particle at any point t, ω is the angular velocity, k is known as propagation constant or angular wave number and its value is equal to 2π/λ where λ is the wavelength , x is a distance and a is the amplitude of vibration of the particles of a wave. The value of k gives us the change of phase per unit path difference. The path difference is the difference in the path traversed by the two waves and phase difference is the difference in the phase angle of the two waves.
In the equation, $y = 3\cos \left( {\dfrac{x}{4} - 10t - \dfrac{\pi }{2}} \right) = 3\cos \left\{ { - \left( {\dfrac{\pi }{2} + 10t - \dfrac{x}{4}} \right)} \right\} = 3\cos \left( {\dfrac{\pi }{2} + 10t - \dfrac{x}{4}} \right)\left[ {\cos \left( { - x} \right) = \cos x} \right]$
So, now the equation is $y = 3\cos \left( {10t - \dfrac{x}{4} + \dfrac{\pi }{2}} \right)$ where $a = 3,\omega = 10,k = \dfrac{1}{4}$ and $\dfrac{\pi }{2}$is the initial phase difference of the wave.
The wave attains its maximum velocity at its amplitude and let the maximum velocity be v.
$v = a\omega \left[ {\because v = r\omega } \right]$
$v = 3 \times 10 = 30$
Hence, the maximum velocity of the particles of the medium due to this wave is 30.
Therefore, option A is correct.
Note:The maximum velocity of the vibrating particles of the wave is obtained at the point of its maximum displacement from its still position to the top of a crest (upward displacement) or to the bottom of a trough (downward displacement).
Complete step by step answer:A simple plane wave is represented by the equation y = a sin(ωt-kx) where y is the displacement of the particle at any point t, ω is the angular velocity, k is known as propagation constant or angular wave number and its value is equal to 2π/λ where λ is the wavelength , x is a distance and a is the amplitude of vibration of the particles of a wave. The value of k gives us the change of phase per unit path difference. The path difference is the difference in the path traversed by the two waves and phase difference is the difference in the phase angle of the two waves.
In the equation, $y = 3\cos \left( {\dfrac{x}{4} - 10t - \dfrac{\pi }{2}} \right) = 3\cos \left\{ { - \left( {\dfrac{\pi }{2} + 10t - \dfrac{x}{4}} \right)} \right\} = 3\cos \left( {\dfrac{\pi }{2} + 10t - \dfrac{x}{4}} \right)\left[ {\cos \left( { - x} \right) = \cos x} \right]$
So, now the equation is $y = 3\cos \left( {10t - \dfrac{x}{4} + \dfrac{\pi }{2}} \right)$ where $a = 3,\omega = 10,k = \dfrac{1}{4}$ and $\dfrac{\pi }{2}$is the initial phase difference of the wave.
The wave attains its maximum velocity at its amplitude and let the maximum velocity be v.
$v = a\omega \left[ {\because v = r\omega } \right]$
$v = 3 \times 10 = 30$
Hence, the maximum velocity of the particles of the medium due to this wave is 30.
Therefore, option A is correct.
Note:The maximum velocity of the vibrating particles of the wave is obtained at the point of its maximum displacement from its still position to the top of a crest (upward displacement) or to the bottom of a trough (downward displacement).
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

