Answer
Verified
456.6k+ views
Hint:Here,we are going to apply the concept of induced emf and Lenz’s law and in the given problem magnetic field is given in terms of time. So, first calculate the emf for one turn and then multiply it with N number of turns to get the required answer.
Formula used:
$e = \dfrac{{ - d{\phi _B}}}{{dt}}$
Where,
${\phi _B} = $ Magnetic flux $(\overrightarrow B .\overrightarrow A )$
B $ = $ magnetic field, A $ = $ Area
Complete step by step answer:
Given that the plane spiral shape is made up of concentric loops, having different radii from 0 to a.
We know that induced emf due to loop is
$e = \dfrac{{ - d{\phi _B}}}{{dt}}$
${\phi _B} = \overrightarrow B .\overrightarrow A $
So, $e = \dfrac{{ - d(\overrightarrow B .\overrightarrow A )}}{{dt}}$
Given that $B = {B_0}\sin \omega t$
So, $e = - A\dfrac{{dB}}{{dt}}$
Where A $ = $ area i.e., $\pi {r^2}$
$e = - \pi {r^2}\dfrac{{d({B_0}\sin \omega t)}}{{dt}}$
$\Rightarrow e = - {B_0}\pi {r^2}\omega \cos \omega t$ …...(1)
So, the total induced emf is
$e = - \int\limits_0^a {(\pi {r^2}{B_0}\omega \cos \omega t)dN} $ …..(2)
Where $\pi {r^2}\omega \cos \omega t$ is the contribution of one turn of radius r.
dN $ = $ Number of turns in the interval r to $r + dr$
$\Rightarrow dN = \left( {\dfrac{N}{a}} \right)dr$ …..(3)
From equation 2 and 3
$\Rightarrow\varepsilon = - \int\limits_0^a {(\pi {r^2}{B_0}\omega \cos \omega t)} \dfrac{N}{a}dr$
$\Rightarrow\varepsilon = - \pi {B_0}\omega \dfrac{N}{a}\cos \omega t\int\limits_0^a {{r^2}dr} $
$\Rightarrow\varepsilon = - \pi {B_0}\omega \dfrac{N}{a}\cos \omega t\left( {\dfrac{{{r^3}}}{3}} \right)_0^a$
$\Rightarrow\varepsilon = \dfrac{{ - \pi {B_0}\omega N\cos \omega t}}{a}\left( {\dfrac{{{a^3}}}{3} - 0} \right)$
$\therefore\varepsilon = - \dfrac{1}{3}\pi {a^2}{B_0}N\omega \cos \omega t$
Hence the amplitude of emf induced in spiral is $\dfrac{1}{3}\pi {a^2}{B_0}N\omega $
So, option A is the correct answer.
Note: In problems of induced emf students may get confused between emf for one turn and for complete spiral. So, always remember to multiply one turn emf with the total number of turns.
Formula used:
$e = \dfrac{{ - d{\phi _B}}}{{dt}}$
Where,
${\phi _B} = $ Magnetic flux $(\overrightarrow B .\overrightarrow A )$
B $ = $ magnetic field, A $ = $ Area
Complete step by step answer:
Given that the plane spiral shape is made up of concentric loops, having different radii from 0 to a.
We know that induced emf due to loop is
$e = \dfrac{{ - d{\phi _B}}}{{dt}}$
${\phi _B} = \overrightarrow B .\overrightarrow A $
So, $e = \dfrac{{ - d(\overrightarrow B .\overrightarrow A )}}{{dt}}$
Given that $B = {B_0}\sin \omega t$
So, $e = - A\dfrac{{dB}}{{dt}}$
Where A $ = $ area i.e., $\pi {r^2}$
$e = - \pi {r^2}\dfrac{{d({B_0}\sin \omega t)}}{{dt}}$
$\Rightarrow e = - {B_0}\pi {r^2}\omega \cos \omega t$ …...(1)
So, the total induced emf is
$e = - \int\limits_0^a {(\pi {r^2}{B_0}\omega \cos \omega t)dN} $ …..(2)
Where $\pi {r^2}\omega \cos \omega t$ is the contribution of one turn of radius r.
dN $ = $ Number of turns in the interval r to $r + dr$
$\Rightarrow dN = \left( {\dfrac{N}{a}} \right)dr$ …..(3)
From equation 2 and 3
$\Rightarrow\varepsilon = - \int\limits_0^a {(\pi {r^2}{B_0}\omega \cos \omega t)} \dfrac{N}{a}dr$
$\Rightarrow\varepsilon = - \pi {B_0}\omega \dfrac{N}{a}\cos \omega t\int\limits_0^a {{r^2}dr} $
$\Rightarrow\varepsilon = - \pi {B_0}\omega \dfrac{N}{a}\cos \omega t\left( {\dfrac{{{r^3}}}{3}} \right)_0^a$
$\Rightarrow\varepsilon = \dfrac{{ - \pi {B_0}\omega N\cos \omega t}}{a}\left( {\dfrac{{{a^3}}}{3} - 0} \right)$
$\therefore\varepsilon = - \dfrac{1}{3}\pi {a^2}{B_0}N\omega \cos \omega t$
Hence the amplitude of emf induced in spiral is $\dfrac{1}{3}\pi {a^2}{B_0}N\omega $
So, option A is the correct answer.
Note: In problems of induced emf students may get confused between emf for one turn and for complete spiral. So, always remember to multiply one turn emf with the total number of turns.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it