
A plane spiral with a great number N of turns wound tightly to one another is located in a uniform magnetic field perpendicular to the spiral’s plane the outside radius of the spiral’s turns is equal to a and inner radius is zero. The magnetic induction various with time as $B = {B_0}\sin \omega t$ where ${B_0}$ and $\omega$ are constants find the amplitude of emf induced the spiral.
(A) $\dfrac{1}{3}\pi {a^2}N\omega {B_0}$
(B) $\dfrac{1}{2}\pi {a^2}N\omega {B_0}$
(C) $\dfrac{1}{4}\pi {a^2}N\omega {B_0}$
(D) None of these
Answer
568.5k+ views
Hint:Here,we are going to apply the concept of induced emf and Lenz’s law and in the given problem magnetic field is given in terms of time. So, first calculate the emf for one turn and then multiply it with N number of turns to get the required answer.
Formula used:
$e = \dfrac{{ - d{\phi _B}}}{{dt}}$
Where,
${\phi _B} = $ Magnetic flux $(\overrightarrow B .\overrightarrow A )$
B $ = $ magnetic field, A $ = $ Area
Complete step by step answer:
Given that the plane spiral shape is made up of concentric loops, having different radii from 0 to a.
We know that induced emf due to loop is
$e = \dfrac{{ - d{\phi _B}}}{{dt}}$
${\phi _B} = \overrightarrow B .\overrightarrow A $
So, $e = \dfrac{{ - d(\overrightarrow B .\overrightarrow A )}}{{dt}}$
Given that $B = {B_0}\sin \omega t$
So, $e = - A\dfrac{{dB}}{{dt}}$
Where A $ = $ area i.e., $\pi {r^2}$
$e = - \pi {r^2}\dfrac{{d({B_0}\sin \omega t)}}{{dt}}$
$\Rightarrow e = - {B_0}\pi {r^2}\omega \cos \omega t$ …...(1)
So, the total induced emf is
$e = - \int\limits_0^a {(\pi {r^2}{B_0}\omega \cos \omega t)dN} $ …..(2)
Where $\pi {r^2}\omega \cos \omega t$ is the contribution of one turn of radius r.
dN $ = $ Number of turns in the interval r to $r + dr$
$\Rightarrow dN = \left( {\dfrac{N}{a}} \right)dr$ …..(3)
From equation 2 and 3
$\Rightarrow\varepsilon = - \int\limits_0^a {(\pi {r^2}{B_0}\omega \cos \omega t)} \dfrac{N}{a}dr$
$\Rightarrow\varepsilon = - \pi {B_0}\omega \dfrac{N}{a}\cos \omega t\int\limits_0^a {{r^2}dr} $
$\Rightarrow\varepsilon = - \pi {B_0}\omega \dfrac{N}{a}\cos \omega t\left( {\dfrac{{{r^3}}}{3}} \right)_0^a$
$\Rightarrow\varepsilon = \dfrac{{ - \pi {B_0}\omega N\cos \omega t}}{a}\left( {\dfrac{{{a^3}}}{3} - 0} \right)$
$\therefore\varepsilon = - \dfrac{1}{3}\pi {a^2}{B_0}N\omega \cos \omega t$
Hence the amplitude of emf induced in spiral is $\dfrac{1}{3}\pi {a^2}{B_0}N\omega $
So, option A is the correct answer.
Note: In problems of induced emf students may get confused between emf for one turn and for complete spiral. So, always remember to multiply one turn emf with the total number of turns.
Formula used:
$e = \dfrac{{ - d{\phi _B}}}{{dt}}$
Where,
${\phi _B} = $ Magnetic flux $(\overrightarrow B .\overrightarrow A )$
B $ = $ magnetic field, A $ = $ Area
Complete step by step answer:
Given that the plane spiral shape is made up of concentric loops, having different radii from 0 to a.
We know that induced emf due to loop is
$e = \dfrac{{ - d{\phi _B}}}{{dt}}$
${\phi _B} = \overrightarrow B .\overrightarrow A $
So, $e = \dfrac{{ - d(\overrightarrow B .\overrightarrow A )}}{{dt}}$
Given that $B = {B_0}\sin \omega t$
So, $e = - A\dfrac{{dB}}{{dt}}$
Where A $ = $ area i.e., $\pi {r^2}$
$e = - \pi {r^2}\dfrac{{d({B_0}\sin \omega t)}}{{dt}}$
$\Rightarrow e = - {B_0}\pi {r^2}\omega \cos \omega t$ …...(1)
So, the total induced emf is
$e = - \int\limits_0^a {(\pi {r^2}{B_0}\omega \cos \omega t)dN} $ …..(2)
Where $\pi {r^2}\omega \cos \omega t$ is the contribution of one turn of radius r.
dN $ = $ Number of turns in the interval r to $r + dr$
$\Rightarrow dN = \left( {\dfrac{N}{a}} \right)dr$ …..(3)
From equation 2 and 3
$\Rightarrow\varepsilon = - \int\limits_0^a {(\pi {r^2}{B_0}\omega \cos \omega t)} \dfrac{N}{a}dr$
$\Rightarrow\varepsilon = - \pi {B_0}\omega \dfrac{N}{a}\cos \omega t\int\limits_0^a {{r^2}dr} $
$\Rightarrow\varepsilon = - \pi {B_0}\omega \dfrac{N}{a}\cos \omega t\left( {\dfrac{{{r^3}}}{3}} \right)_0^a$
$\Rightarrow\varepsilon = \dfrac{{ - \pi {B_0}\omega N\cos \omega t}}{a}\left( {\dfrac{{{a^3}}}{3} - 0} \right)$
$\therefore\varepsilon = - \dfrac{1}{3}\pi {a^2}{B_0}N\omega \cos \omega t$
Hence the amplitude of emf induced in spiral is $\dfrac{1}{3}\pi {a^2}{B_0}N\omega $
So, option A is the correct answer.
Note: In problems of induced emf students may get confused between emf for one turn and for complete spiral. So, always remember to multiply one turn emf with the total number of turns.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

