A plane flying horizontally at \[100\,{\text{m}}{{\text{s}}^{ - 1}}\] releases an object which reaches the ground in \[10\,{\text{s}}\]. At what angle with the horizontal it hits the ground?
A. \[55^\circ \]
B. \[45^\circ \]
C. \[60^\circ \]
D. \[75^\circ \]
Answer
Verified
480k+ views
Hint: Use the formula:
\[v = u + at\] and find the horizontal and vertical component of velocity.
Use the formula:
\[\tan \theta = \,\,\dfrac{{{v_Y}}}{{{v_X}}}\] to find the angle.
Complete step by step solution:
In this given problem, the plane is flying horizontally, whose velocity is \[100\,{\text{m}}{{\text{s}}^{ - 1}}\]. During the flight, it suddenly drops an object from it. The object does not fall horizontally, rather it will move at an inclination with the horizontal.
Let the angle at which the object falls to the ground be \[\theta \].
In the figure, the initial and the final velocity of the horizontal motion are indicated along with the initial and final velocity of the vertical motion.
\[{u_X}\] indicates the initial velocity along the horizontal motion.
\[{v_X}\] indicates the final velocity along the horizontal motion.
\[{u_Y}\] indicates the initial velocity along the vertical motion.
\[{v_Y}\] indicates the final velocity along the vertical motion.
Applying the formula, along the vertical component:
\[{u_X} = 100\,{\text{m}}{{\text{s}}^{ - 1}}\], \[{v_X} = ?\], \[{a_X} = 0\] and \[t = 10\,{\text{s}}\]
\[
{v_X} = {u_X} + {a_X}t \\
= 100 + 0 \times 10 \\
= 100\,{\text{m}}{{\text{s}}^{ - 1}} \\
\]
Applying the formula, along the horizontal component:
\[{u_Y} = 0\,{\text{m}}{{\text{s}}^{ - 1}}\], \[{v_X} = ?\], \[{a_X} = 10\,{\text{m}}{{\text{s}}^{ - 2}}\] and \[t = 10\,{\text{s}}\]
\[
{v_Y} = {u_Y} + {a_Y}t \\
= 0 + 10 \times 10 \\
= 100\,{\text{m}}{{\text{s}}^{ - 1}} \\
\]
The horizontal component of velocity is \[100\,{\text{m}}{{\text{s}}^{ - 1}}\] and the vertical component of velocity is \[100\,{\text{m}}{{\text{s}}^{ - 1}}\].
To find angle at which the object hits the ground:
Find tangent:
\[
\tan \theta = \,\,\dfrac{{{v_Y}}}{{{v_X}}} \\
\tan \theta = \,\,\dfrac{{100}}{{100}} \\
\tan \theta = \,\,1 \\
\theta = \,\,{\tan ^{ - 1}}\left( 1 \right) \\
\]
\[\theta = 45^\circ \]
The angle at which the object hits the ground is \[45^\circ \].
Note: In this problem, you are asked to find the angle at which the object hits the ground. For this, you have to take the vertical and the horizontal component separately. While calculating the horizontal component of velocity, take acceleration due to gravity as zero, as the gravitational pull does not act along the horizontal direction.
\[v = u + at\] and find the horizontal and vertical component of velocity.
Use the formula:
\[\tan \theta = \,\,\dfrac{{{v_Y}}}{{{v_X}}}\] to find the angle.
Complete step by step solution:
In this given problem, the plane is flying horizontally, whose velocity is \[100\,{\text{m}}{{\text{s}}^{ - 1}}\]. During the flight, it suddenly drops an object from it. The object does not fall horizontally, rather it will move at an inclination with the horizontal.
Let the angle at which the object falls to the ground be \[\theta \].
In the figure, the initial and the final velocity of the horizontal motion are indicated along with the initial and final velocity of the vertical motion.
\[{u_X}\] indicates the initial velocity along the horizontal motion.
\[{v_X}\] indicates the final velocity along the horizontal motion.
\[{u_Y}\] indicates the initial velocity along the vertical motion.
\[{v_Y}\] indicates the final velocity along the vertical motion.
Applying the formula, along the vertical component:
\[{u_X} = 100\,{\text{m}}{{\text{s}}^{ - 1}}\], \[{v_X} = ?\], \[{a_X} = 0\] and \[t = 10\,{\text{s}}\]
\[
{v_X} = {u_X} + {a_X}t \\
= 100 + 0 \times 10 \\
= 100\,{\text{m}}{{\text{s}}^{ - 1}} \\
\]
Applying the formula, along the horizontal component:
\[{u_Y} = 0\,{\text{m}}{{\text{s}}^{ - 1}}\], \[{v_X} = ?\], \[{a_X} = 10\,{\text{m}}{{\text{s}}^{ - 2}}\] and \[t = 10\,{\text{s}}\]
\[
{v_Y} = {u_Y} + {a_Y}t \\
= 0 + 10 \times 10 \\
= 100\,{\text{m}}{{\text{s}}^{ - 1}} \\
\]
The horizontal component of velocity is \[100\,{\text{m}}{{\text{s}}^{ - 1}}\] and the vertical component of velocity is \[100\,{\text{m}}{{\text{s}}^{ - 1}}\].
To find angle at which the object hits the ground:
Find tangent:
\[
\tan \theta = \,\,\dfrac{{{v_Y}}}{{{v_X}}} \\
\tan \theta = \,\,\dfrac{{100}}{{100}} \\
\tan \theta = \,\,1 \\
\theta = \,\,{\tan ^{ - 1}}\left( 1 \right) \\
\]
\[\theta = 45^\circ \]
The angle at which the object hits the ground is \[45^\circ \].
Note: In this problem, you are asked to find the angle at which the object hits the ground. For this, you have to take the vertical and the horizontal component separately. While calculating the horizontal component of velocity, take acceleration due to gravity as zero, as the gravitational pull does not act along the horizontal direction.
Recently Updated Pages
One difference between a Formal Letter and an informal class null english null
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE
Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE
What are the possible quantum number for the last outermost class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What is the chemical name of Iron class 11 chemistry CBSE
The dimensional formula of dielectric strength A M1L1T2Q class 11 physics CBSE
The members of the Municipal Corporation are elected class 11 social science CBSE
What is spore formation class 11 biology CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE