
A person standing on the escalator takes time \[{t_1}\] to reach the top of a tower when the escalator is moving. He takes time \[{t_2}\] to reach the top of the tower when the escalator is standing. How long will he take if he walks up a moving escalator?
(A) \[{t_2} - {t_1}\]
(B) \[{t_1} + {t_2}\]
(C) \[\dfrac{{{t_1}{t_2}}}{{{t_1} - {t_2}}}\]
(D) \[\dfrac{{{t_1}{t_2}}}{{{t_1} + {t_2}}}\]
Answer
556.8k+ views
Hint: Use the relation between the velocity, displacement and time to determine the speeds of escalator and person separately. Add these two speeds to obtain the combined velocity. Again, use the relation between the velocity, displacement and time to determine the time.
Formula used:
\[ \Rightarrow v = \dfrac{d}{t}\]
Here, d is the distance and t is the time.
Complete step by step answer:
Suppose \[d\] is the distance that the person wants to travel through the escalator to reach the top of the tower.
We know the relation between velocity, distance and time. The velocity of the body is the distance d divided by time t.
\[ \Rightarrow v = \dfrac{d}{t}\]
The speed of the escalator is,
\[{v_1} = \dfrac{d}{{{t_1}}}\]
Here, \[{t_1}\] is the time taken by the person to reach the top of the tower using a moving escalator.
The speed of the walking person over an escalator is,
\[ \Rightarrow {v_2} = \dfrac{d}{{{t_2}}}\]
Here, \[{t_2}\] is the time taken by the person to reach the top of the tower by walking.
The speed of the person while walking on the moving escalator is the sum of the above speeds.
Therefore,
\[ \Rightarrow v = \dfrac{d}{{{t_1}}} + \dfrac{d}{{{t_2}}}\]
\[ \Rightarrow v = d\left( {\dfrac{1}{{{t_1}}} + \dfrac{1}{{{t_2}}}} \right)\]
time taken by the person to reach the top of the tower with this speed is,
\[ \Rightarrow t = \dfrac{d}{v}\]
\[ \Rightarrow t = \dfrac{d}{{d\left( {\dfrac{1}{{{t_1}}} + \dfrac{1}{{{t_2}}}} \right)}}\]
Rearrange the above equation as follows,
\[ \Rightarrow t = \dfrac{1}{{\dfrac{{{t_1} + {t_2}}}{{{t_1}{t_2}}}}}\]
\[ \Rightarrow t = \dfrac{{{t_1}{t_2}}}{{{t_1} + {t_2}}}\]
So, the correct answer is option (D).
Note: In this question, the distance to be traversed is the same for both cases. Therefore, do not take different distances for the distance travelled by the person through escalator and the distance travelled by the person by walking.
Formula used:
\[ \Rightarrow v = \dfrac{d}{t}\]
Here, d is the distance and t is the time.
Complete step by step answer:
Suppose \[d\] is the distance that the person wants to travel through the escalator to reach the top of the tower.
We know the relation between velocity, distance and time. The velocity of the body is the distance d divided by time t.
\[ \Rightarrow v = \dfrac{d}{t}\]
The speed of the escalator is,
\[{v_1} = \dfrac{d}{{{t_1}}}\]
Here, \[{t_1}\] is the time taken by the person to reach the top of the tower using a moving escalator.
The speed of the walking person over an escalator is,
\[ \Rightarrow {v_2} = \dfrac{d}{{{t_2}}}\]
Here, \[{t_2}\] is the time taken by the person to reach the top of the tower by walking.
The speed of the person while walking on the moving escalator is the sum of the above speeds.
Therefore,
\[ \Rightarrow v = \dfrac{d}{{{t_1}}} + \dfrac{d}{{{t_2}}}\]
\[ \Rightarrow v = d\left( {\dfrac{1}{{{t_1}}} + \dfrac{1}{{{t_2}}}} \right)\]
time taken by the person to reach the top of the tower with this speed is,
\[ \Rightarrow t = \dfrac{d}{v}\]
\[ \Rightarrow t = \dfrac{d}{{d\left( {\dfrac{1}{{{t_1}}} + \dfrac{1}{{{t_2}}}} \right)}}\]
Rearrange the above equation as follows,
\[ \Rightarrow t = \dfrac{1}{{\dfrac{{{t_1} + {t_2}}}{{{t_1}{t_2}}}}}\]
\[ \Rightarrow t = \dfrac{{{t_1}{t_2}}}{{{t_1} + {t_2}}}\]
So, the correct answer is option (D).
Note: In this question, the distance to be traversed is the same for both cases. Therefore, do not take different distances for the distance travelled by the person through escalator and the distance travelled by the person by walking.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

