Answer
Verified
492.9k+ views
Hint: Area of circle is $\pi {{r}^{2}}$ where ‘r’ is the radius of the circle and $\pi =\dfrac{22}{7}$. Perimeter is defined as the continuous line forming the boundary of a closed geometric figure.
Complete step-by-step answer:
Here, we have a path which runs around a semi-circular plot as shown in diagram:-
Width of path = 3.5m
Perimeter of plot (semi-circle BC) =72m
As we know that perimeter of any semi-circle can be given as $\pi r+2r$,
where r= Radius of inner semi-circle
R= Radius of outer semi-circle
$\pi =\dfrac{22}{7}$
Hence, Perimeter of plot as shown in diagram =72
$\begin{align}
& \pi r+2r=72 \\
& \dfrac{22r}{7}+\dfrac{2r}{1}=72 \\
& \dfrac{22r+14r}{7}=72 \\
\end{align}$
or $\dfrac{36r}{7}=72$
So, we get
$r=\dfrac{72\times 7}{36}=14m$.
Now, we can determine the radius of semicircle AD or outer part of the path be OC+CD i.e. r+3.5.
Hence, R=r+3.5m
Where r=14m
So, R=14+3.5=17.5m
As we have to determine area of path which can be given by relation as,
Area of path (ABCD) =Area of outer semi-circle (AD)-Area of inner semi-circle (BC)
We have area of semicircle=$\dfrac{\pi {{r}^{2}}}{2}$
where r is the radius of a semi-circle.
Hence, area of path can be given as
Area of path = $\dfrac{\pi {{R}^{2}}}{2}-\dfrac{\pi {{r}^{2}}}{2}$
where R=17.5m and r=14m and $\pi =\dfrac{22}{7}$.
Area of path = $\dfrac{22}{7}\times \dfrac{1}{2}\times \left( {{R}^{2}}-{{r}^{2}} \right)=\dfrac{11}{7}\left( {{17.5}^{2}}-{{14}^{2}} \right)$
We have algebraic identity $\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right)$
So, area of path can be rewritten as
Area of path = $\dfrac{11}{7}\left( 17.5-14 \right)\left( 17.5+14 \right)=\dfrac{11}{7}\times 3.5\times 31.5=11\times 0.5\times 31.5$
Area of path$=173.25{{m}^{2}}$
Note: One can go wrong while writing the perimeter of the semi-circle of the plot. He/she may apply the formula ‘$\pi r$’ in place of $\pi r+2r$ which will give the wrong answer. Hence, take care while writing the perimeter of the semi-circle.
Complete step-by-step answer:
Here, we have a path which runs around a semi-circular plot as shown in diagram:-
Width of path = 3.5m
Perimeter of plot (semi-circle BC) =72m
As we know that perimeter of any semi-circle can be given as $\pi r+2r$,
where r= Radius of inner semi-circle
R= Radius of outer semi-circle
$\pi =\dfrac{22}{7}$
Hence, Perimeter of plot as shown in diagram =72
$\begin{align}
& \pi r+2r=72 \\
& \dfrac{22r}{7}+\dfrac{2r}{1}=72 \\
& \dfrac{22r+14r}{7}=72 \\
\end{align}$
or $\dfrac{36r}{7}=72$
So, we get
$r=\dfrac{72\times 7}{36}=14m$.
Now, we can determine the radius of semicircle AD or outer part of the path be OC+CD i.e. r+3.5.
Hence, R=r+3.5m
Where r=14m
So, R=14+3.5=17.5m
As we have to determine area of path which can be given by relation as,
Area of path (ABCD) =Area of outer semi-circle (AD)-Area of inner semi-circle (BC)
We have area of semicircle=$\dfrac{\pi {{r}^{2}}}{2}$
where r is the radius of a semi-circle.
Hence, area of path can be given as
Area of path = $\dfrac{\pi {{R}^{2}}}{2}-\dfrac{\pi {{r}^{2}}}{2}$
where R=17.5m and r=14m and $\pi =\dfrac{22}{7}$.
Area of path = $\dfrac{22}{7}\times \dfrac{1}{2}\times \left( {{R}^{2}}-{{r}^{2}} \right)=\dfrac{11}{7}\left( {{17.5}^{2}}-{{14}^{2}} \right)$
We have algebraic identity $\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right)$
So, area of path can be rewritten as
Area of path = $\dfrac{11}{7}\left( 17.5-14 \right)\left( 17.5+14 \right)=\dfrac{11}{7}\times 3.5\times 31.5=11\times 0.5\times 31.5$
Area of path$=173.25{{m}^{2}}$
Note: One can go wrong while writing the perimeter of the semi-circle of the plot. He/she may apply the formula ‘$\pi r$’ in place of $\pi r+2r$ which will give the wrong answer. Hence, take care while writing the perimeter of the semi-circle.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life