A particle projected from ground moves at angle \[45^\circ \] with horizontal one second after the projection and speed is minimum two seconds after the projection. The angle of projection of particle is (Neglect the effect of air resistance)
A. \[{\tan ^{ - 1}}\left( 3 \right)\]
B. \[{\tan ^{ - 1}}\left( 2 \right)\]
C. \[{\tan ^{ - 1}}\left( {\sqrt 2 } \right)\]
D. \[{\tan ^{ - 1}}\left( 4 \right)\]
Answer
Verified
468.3k+ views
Hint: Use the formula for the time of ascent of the projectile.
Also, use the kinematic equation relating initial velocity, final velocity, acceleration and time.
Formula used:
The time of ascent of the projectile is given by
\[t = \dfrac{{u\sin \theta }}{g}\] …… (1)
Here, \[t\] is the time of ascent of the projectile, \[u\] is the speed of projection, \[\theta \] is the angle
of projection and \[g\] is the acceleration due to gravity.
The kinematic equation relating the final vertical velocity \[{v_y}\], initial vertical velocity \[{u_y}\], acceleration \[g\] and time \[t\] of a particle in projectile motion is
\[{v_y} = {u_y} - gt\] …… (2)
The angle of projection \[\theta \] of the projectile is given by
\[\theta = {\tan ^{ - 1}}\left( {\dfrac{{{v_y}}}{{{v_x}}}} \right)\] …… (3)
Here, \[{v_x}\] and \[{v_y}\] are the horizontal and vertical components of velocity of the projectile at any time \[t\].
Complete step by step answer:
The particle projected in the air starts its projectile motion one second after the launch at an angle of projection \[45^\circ \] and attains the minimum speed two seconds after the projection.
The diagram representing the projectile motion of the particle is as follows:
In the above figure, \[\theta \] is the angle of projection, \[u\] is the speed of projection and \[{v_x}\] and \[{v_y}\] are the horizontal and vertical components of velocity at any time.
The particle has a minimum velocity after two seconds of the projection. The projectile has the minimum speed at the maximum height as the vertical speed of the projectile becomes zero at maximum height.
The time taken by the particle to reach the maximum height is known as time of ascent.
The velocity of the particle becomes minimum i.e. zero after two seconds of projection.
Hence, the time of ascent of the particle is two seconds.
Substitute \[2\,{\text{s}}\] for \[t\] in equation (1).
\[2\,{\text{s}} = \dfrac{{u\sin \theta }}{g}\]
\[ \Rightarrow u\sin \theta = 2g\]
The horizontal and vertical components of the initial velocity of the projectile are \[u\cos \theta \] and \[u\sin \theta \].
\[{u_x} = u\cos \theta \]
\[{u_y} = u\sin \theta \]
The horizontal component of the speed \[{v_x}\] of projectile remains the same throughout the projectile motion.
\[{v_x} = u\cos \theta \]
Calculate the vertical component of the velocity of the projectile at any time.
Substitute \[u\sin \theta \] for \[{u_y}\] in equation (2).
\[{v_y} = u\sin \theta - gt\]
Calculate the vertical component of velocity \[{v_y}\] at time one second after the projection.
Substitute \[2g\] for \[u\sin \theta \] and \[1\,{\text{s}}\] for \[t\] in the above equation.
\[{v_y} = 2g - g\left( {1\,{\text{s}}} \right)\]
\[ \Rightarrow {v_y} = g\]
Rewrite the equation for the angle of projection of the projectile one second after its projection.
Substitute \[45^\circ \] for \[\theta \], \[u\cos \theta \] for \[{v_x}\] and \[g\] for \[{v_y}\] in equation (3).
\[45^\circ = {\tan ^{ - 1}}\left( {\dfrac{g}{{u\cos \theta }}} \right)\]
\[ \Rightarrow \tan 45^\circ = \dfrac{g}{{u\cos \theta }}\]
\[ \Rightarrow u\cos \theta = g\]
Now calculate the angle of projection of the projectile.
Substitute \[u\sin \theta \] for \[{v_y}\] and \[u\cos \theta \] for \[{v_x}\] in equation (3).
\[\theta = {\tan ^{ - 1}}\left( {\dfrac{{u\sin \theta }}{{u\cos \theta }}} \right)\
Substitute \[2g\] for \[u\sin \theta \] and \[g\] for \[u\cos \theta \] in the above equation.
\[\theta = {\tan ^{ - 1}}\left( {\dfrac{{2g}}{g}} \right)\]
\[ \Rightarrow \theta = {\tan ^{ - 1}}\left( 2 \right)\]
Therefore, the angle of projection of the particle is \[{\tan ^{ - 1}}\left( 2 \right)\].
So, the correct answer is “Option B”.
Note:
\[u\sin \theta \] and \[u\cos \theta \] are the vertical and horizontal components of only initial velocity of projection. For the rest of the projectile motion, the vertical component of the velocity of the projectile changes continuously and the horizontal component remains the same. The projectile motion of the particle in the present example starts after the one second of projection.
Also, use the kinematic equation relating initial velocity, final velocity, acceleration and time.
Formula used:
The time of ascent of the projectile is given by
\[t = \dfrac{{u\sin \theta }}{g}\] …… (1)
Here, \[t\] is the time of ascent of the projectile, \[u\] is the speed of projection, \[\theta \] is the angle
of projection and \[g\] is the acceleration due to gravity.
The kinematic equation relating the final vertical velocity \[{v_y}\], initial vertical velocity \[{u_y}\], acceleration \[g\] and time \[t\] of a particle in projectile motion is
\[{v_y} = {u_y} - gt\] …… (2)
The angle of projection \[\theta \] of the projectile is given by
\[\theta = {\tan ^{ - 1}}\left( {\dfrac{{{v_y}}}{{{v_x}}}} \right)\] …… (3)
Here, \[{v_x}\] and \[{v_y}\] are the horizontal and vertical components of velocity of the projectile at any time \[t\].
Complete step by step answer:
The particle projected in the air starts its projectile motion one second after the launch at an angle of projection \[45^\circ \] and attains the minimum speed two seconds after the projection.
The diagram representing the projectile motion of the particle is as follows:
In the above figure, \[\theta \] is the angle of projection, \[u\] is the speed of projection and \[{v_x}\] and \[{v_y}\] are the horizontal and vertical components of velocity at any time.
The particle has a minimum velocity after two seconds of the projection. The projectile has the minimum speed at the maximum height as the vertical speed of the projectile becomes zero at maximum height.
The time taken by the particle to reach the maximum height is known as time of ascent.
The velocity of the particle becomes minimum i.e. zero after two seconds of projection.
Hence, the time of ascent of the particle is two seconds.
Substitute \[2\,{\text{s}}\] for \[t\] in equation (1).
\[2\,{\text{s}} = \dfrac{{u\sin \theta }}{g}\]
\[ \Rightarrow u\sin \theta = 2g\]
The horizontal and vertical components of the initial velocity of the projectile are \[u\cos \theta \] and \[u\sin \theta \].
\[{u_x} = u\cos \theta \]
\[{u_y} = u\sin \theta \]
The horizontal component of the speed \[{v_x}\] of projectile remains the same throughout the projectile motion.
\[{v_x} = u\cos \theta \]
Calculate the vertical component of the velocity of the projectile at any time.
Substitute \[u\sin \theta \] for \[{u_y}\] in equation (2).
\[{v_y} = u\sin \theta - gt\]
Calculate the vertical component of velocity \[{v_y}\] at time one second after the projection.
Substitute \[2g\] for \[u\sin \theta \] and \[1\,{\text{s}}\] for \[t\] in the above equation.
\[{v_y} = 2g - g\left( {1\,{\text{s}}} \right)\]
\[ \Rightarrow {v_y} = g\]
Rewrite the equation for the angle of projection of the projectile one second after its projection.
Substitute \[45^\circ \] for \[\theta \], \[u\cos \theta \] for \[{v_x}\] and \[g\] for \[{v_y}\] in equation (3).
\[45^\circ = {\tan ^{ - 1}}\left( {\dfrac{g}{{u\cos \theta }}} \right)\]
\[ \Rightarrow \tan 45^\circ = \dfrac{g}{{u\cos \theta }}\]
\[ \Rightarrow u\cos \theta = g\]
Now calculate the angle of projection of the projectile.
Substitute \[u\sin \theta \] for \[{v_y}\] and \[u\cos \theta \] for \[{v_x}\] in equation (3).
\[\theta = {\tan ^{ - 1}}\left( {\dfrac{{u\sin \theta }}{{u\cos \theta }}} \right)\
Substitute \[2g\] for \[u\sin \theta \] and \[g\] for \[u\cos \theta \] in the above equation.
\[\theta = {\tan ^{ - 1}}\left( {\dfrac{{2g}}{g}} \right)\]
\[ \Rightarrow \theta = {\tan ^{ - 1}}\left( 2 \right)\]
Therefore, the angle of projection of the particle is \[{\tan ^{ - 1}}\left( 2 \right)\].
So, the correct answer is “Option B”.
Note:
\[u\sin \theta \] and \[u\cos \theta \] are the vertical and horizontal components of only initial velocity of projection. For the rest of the projectile motion, the vertical component of the velocity of the projectile changes continuously and the horizontal component remains the same. The projectile motion of the particle in the present example starts after the one second of projection.
Recently Updated Pages
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Class 11 Question and Answer - Your Ultimate Solutions Guide
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE