
A particle moves in a straight line and its position x at time t is given by ${{x}^{2}}=2+t$. Its acceleration is given by
$\text{A}\text{. }\dfrac{-2}{{{x}^{3}}}$
$\text{B}\text{. }\dfrac{-1}{4{{x}^{3}}}$
$\text{C}\text{. }\dfrac{-1}{4{{x}^{2}}}$
$\text{D}\text{. }\dfrac{1}{{{x}^{2}}}$
Answer
577.8k+ views
Hint: The second derivative of the position of the particle with respect to time is called the acceleration of the particle. Hence, differentiate the given equation i.e. ${{x}^{2}}=2+t$ twice to find the second derivative of x with respect to t. i.e. $\dfrac{{{d}^{2}}x}{d{{t}^{2}}}$.
Complete step by step answer:
Let us first understand what is meant by acceleration of the particle. Before that we have to understand the meaning of velocity of a particle.
Velocity of the particle is defined as the rate of change of position of the particle with respect to time. We can also say the velocity of the particle is the change in position of the particle in one unit of time.
When we say that a particle is in an acceleration, it means its velocity is changing with time. Acceleration of a body is defined as the rate of change of velocity of a particle with respect to time. In other words, it is the change in velocity of the moving particle in one unit of time.
Mathematically, acceleration is the second derivative of the position of the moving particle with respect to time i.e.$\dfrac{{{d}^{2}}x}{d{{t}^{2}}}$. Therefore, if we want to find the acceleration of a particle, all we want is the function of its position with respect to time i.e. x(t). Then the second derivative of the function x(t) with respect to time t will give us the acceleration of the particle.
In the question, the square of the position of the particle as a function of time t is given as ${{x}^{2}}=2+t$ ….. (i).
Differentiate both the sides of equation (i) with respect to x.
Therefore, we get
$2x\dfrac{dx}{dt}=1$
$\Rightarrow \dfrac{dx}{dt}=\dfrac{1}{2x}$…. (ii)
Therefore, we found the first derivative of x with respect to time (i.e. velocity of the particle).
Now, differentiate equation (ii) with respect to x.
Hence, we get,
$\Rightarrow \dfrac{{{d}^{2}}x}{d{{t}^{2}}}=\dfrac{-1}{2{{x}^{2}}}\dfrac{dx}{dt}$.
Substitute the value of $\dfrac{dx}{dt}$ from equation (ii).
$\Rightarrow \dfrac{{{d}^{2}}x}{d{{t}^{2}}}=\dfrac{-1}{2{{x}^{2}}}.\dfrac{1}{2x}=\dfrac{-1}{4{{x}^{3}}}$
This means that the second derivative of the position of the particle is $\dfrac{-1}{4{{x}^{3}}}$. Hence, the acceleration of the particle is $\dfrac{-1}{4{{x}^{3}}}$.
So, the correct answer is “Option B”.
Note: We can also first write the function of x by taking square root on both the sides of equation (i) and differentiate x twice with respect to time t to find the acceleration. When we take square root, x(t) becomes $x=\pm \sqrt{2+t}$.
However, students may make a mistake by just taking the positive value of the root i.e. $x=\sqrt{2+t}$ and neglect the negative value. Note that both the values must be taken into consideration.
Complete step by step answer:
Let us first understand what is meant by acceleration of the particle. Before that we have to understand the meaning of velocity of a particle.
Velocity of the particle is defined as the rate of change of position of the particle with respect to time. We can also say the velocity of the particle is the change in position of the particle in one unit of time.
When we say that a particle is in an acceleration, it means its velocity is changing with time. Acceleration of a body is defined as the rate of change of velocity of a particle with respect to time. In other words, it is the change in velocity of the moving particle in one unit of time.
Mathematically, acceleration is the second derivative of the position of the moving particle with respect to time i.e.$\dfrac{{{d}^{2}}x}{d{{t}^{2}}}$. Therefore, if we want to find the acceleration of a particle, all we want is the function of its position with respect to time i.e. x(t). Then the second derivative of the function x(t) with respect to time t will give us the acceleration of the particle.
In the question, the square of the position of the particle as a function of time t is given as ${{x}^{2}}=2+t$ ….. (i).
Differentiate both the sides of equation (i) with respect to x.
Therefore, we get
$2x\dfrac{dx}{dt}=1$
$\Rightarrow \dfrac{dx}{dt}=\dfrac{1}{2x}$…. (ii)
Therefore, we found the first derivative of x with respect to time (i.e. velocity of the particle).
Now, differentiate equation (ii) with respect to x.
Hence, we get,
$\Rightarrow \dfrac{{{d}^{2}}x}{d{{t}^{2}}}=\dfrac{-1}{2{{x}^{2}}}\dfrac{dx}{dt}$.
Substitute the value of $\dfrac{dx}{dt}$ from equation (ii).
$\Rightarrow \dfrac{{{d}^{2}}x}{d{{t}^{2}}}=\dfrac{-1}{2{{x}^{2}}}.\dfrac{1}{2x}=\dfrac{-1}{4{{x}^{3}}}$
This means that the second derivative of the position of the particle is $\dfrac{-1}{4{{x}^{3}}}$. Hence, the acceleration of the particle is $\dfrac{-1}{4{{x}^{3}}}$.
So, the correct answer is “Option B”.
Note: We can also first write the function of x by taking square root on both the sides of equation (i) and differentiate x twice with respect to time t to find the acceleration. When we take square root, x(t) becomes $x=\pm \sqrt{2+t}$.
However, students may make a mistake by just taking the positive value of the root i.e. $x=\sqrt{2+t}$ and neglect the negative value. Note that both the values must be taken into consideration.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which animal has three hearts class 11 biology CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

Mention the basic forces in nature class 11 physics CBSE

What is centripetal acceleration Derive the expression class 11 physics CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

