Answer
Verified
424.8k+ views
Hint: In order to find the solution of the given question, we need to know about the formula for the horizontal range and the maximum height in case of a projectile motion. Also, we need to know the values of the horizontal range and height at the centre of the curvature. After that we need to solve the equations obtained. Then we can finally conclude with the correct solution for the given question.
Complete step by step answer:
Step one:
We know that the range, $r = \dfrac{{{v^2}}}{g}$
Since, the particle is covering the horizontal distance, we need to take the horizontal component of the velocity. Therefore, the range can be written as,
$r = \dfrac{{{{(u\cos \theta )}^2}}}{g} = \dfrac{{{u^2}{{\cos }^2}\theta }}{g}$ -----(i)
We know that the radius of curvature can be written as, $R = \dfrac{{{u^2}\sin 2\theta }}{g}$ ----(ii)
and the maximum height can be written as, $H = \dfrac{{{u^2}{{\sin }^2}\theta }}{{2g}}$ ----(iii)
Step two:
We also know that the coordinates at the centre of curvature are given by $\left( {\dfrac{R}{2},H - r} \right)$
Comparing the above coordinates with the values given in the question, we get,
$\dfrac{R}{2} = 20$
$ \Rightarrow R = 40$
Now comparing the above value with equation (ii), we get,
$40 = \dfrac{{{u^2}\sin 2\theta }}{g}$
$ \Rightarrow 40 = \dfrac{{{u^2}2\sin \theta \cos \theta }}{{10}}$ -----(iv)
Now, $\sin \theta = \dfrac{3}{{\sqrt {10} }}$ and $\cos \theta = \dfrac{1}{{\sqrt {10} }}$ also $\tan \theta = 3$
Putting these values in equation (iv), we get,
$40 = \dfrac{{{u^2}2 \times \dfrac{3}{{\sqrt {10} }} \times \dfrac{1}{{\sqrt {10} }}}}{{10}}$
$ \Rightarrow 400 = \dfrac{{6{u^2}}}{{10}}$
$ \Rightarrow {u^2} = \dfrac{{4000}}{6}$
$\therefore u = \sqrt {\dfrac{{4000}}{6}} = \sqrt {\dfrac{{2000}}{3}} m{s^{ - 1}}$
Step three:
Now, let us find the value of the height, $H = \dfrac{{{u^2}{{\sin }^2}\theta }}{{2g}}$
$ \Rightarrow H = \dfrac{{4000}}{6} \times \dfrac{9}{{10 \times 20}} = 30m$
Step four:
Now let us find the equation of $y$. It can be written as,
$y = x\tan \theta - \dfrac{1}{2} \times \dfrac{{g{x^2}}}{{{u^2}{{\cos }^2}\theta }}$
$\therefore y = 3x - \dfrac{{3{x^2}}}{{40}}$
After analyzing the values we can conclude that the options A,B,C are the correct choices for the given question.
Hence, the correct answers are option (A), (B) and (C).
Note: In a parabola, the y-intercept is a point where the parabola crosses the y-axis. We should also know this fact that the equation of a parabola in two variables can be written as $y = a{x^2} + bx + c$. The maximum height attained by a body when it is moving in a parabolic path can be found by $H = \dfrac{{{u^2}{{\sin }^2}\theta }}{{2g}}$.
Complete step by step answer:
Step one:
We know that the range, $r = \dfrac{{{v^2}}}{g}$
Since, the particle is covering the horizontal distance, we need to take the horizontal component of the velocity. Therefore, the range can be written as,
$r = \dfrac{{{{(u\cos \theta )}^2}}}{g} = \dfrac{{{u^2}{{\cos }^2}\theta }}{g}$ -----(i)
We know that the radius of curvature can be written as, $R = \dfrac{{{u^2}\sin 2\theta }}{g}$ ----(ii)
and the maximum height can be written as, $H = \dfrac{{{u^2}{{\sin }^2}\theta }}{{2g}}$ ----(iii)
Step two:
We also know that the coordinates at the centre of curvature are given by $\left( {\dfrac{R}{2},H - r} \right)$
Comparing the above coordinates with the values given in the question, we get,
$\dfrac{R}{2} = 20$
$ \Rightarrow R = 40$
Now comparing the above value with equation (ii), we get,
$40 = \dfrac{{{u^2}\sin 2\theta }}{g}$
$ \Rightarrow 40 = \dfrac{{{u^2}2\sin \theta \cos \theta }}{{10}}$ -----(iv)
Now, $\sin \theta = \dfrac{3}{{\sqrt {10} }}$ and $\cos \theta = \dfrac{1}{{\sqrt {10} }}$ also $\tan \theta = 3$
Putting these values in equation (iv), we get,
$40 = \dfrac{{{u^2}2 \times \dfrac{3}{{\sqrt {10} }} \times \dfrac{1}{{\sqrt {10} }}}}{{10}}$
$ \Rightarrow 400 = \dfrac{{6{u^2}}}{{10}}$
$ \Rightarrow {u^2} = \dfrac{{4000}}{6}$
$\therefore u = \sqrt {\dfrac{{4000}}{6}} = \sqrt {\dfrac{{2000}}{3}} m{s^{ - 1}}$
Step three:
Now, let us find the value of the height, $H = \dfrac{{{u^2}{{\sin }^2}\theta }}{{2g}}$
$ \Rightarrow H = \dfrac{{4000}}{6} \times \dfrac{9}{{10 \times 20}} = 30m$
Step four:
Now let us find the equation of $y$. It can be written as,
$y = x\tan \theta - \dfrac{1}{2} \times \dfrac{{g{x^2}}}{{{u^2}{{\cos }^2}\theta }}$
$\therefore y = 3x - \dfrac{{3{x^2}}}{{40}}$
After analyzing the values we can conclude that the options A,B,C are the correct choices for the given question.
Hence, the correct answers are option (A), (B) and (C).
Note: In a parabola, the y-intercept is a point where the parabola crosses the y-axis. We should also know this fact that the equation of a parabola in two variables can be written as $y = a{x^2} + bx + c$. The maximum height attained by a body when it is moving in a parabolic path can be found by $H = \dfrac{{{u^2}{{\sin }^2}\theta }}{{2g}}$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE