A particle is moving with a velocity $v = k\left( {yi + xj} \right)$ where $k$ is a constant. The general equation for the path described by the particle is
a. $y = {x^2} + ct$
b. \[{y^2} = x + c\]
c. \[xy = c\]
d. \[{y^2} = {x^2} + c\]
Answer
Verified
450.6k+ views
Hint: The velocity and the position can be derived from the newton equation by the method of integration. Velocity is the rate of change of displacement.
First find the velocity along x axis then along the y axis.
Then equate the two equations. Then obtain one of the above equations using the above equations.
Formula used:
$v = \dfrac{{dx}}{{dt}}$
$v$ is the velocity and $t$ is the time.
Complete step by step answer:
To describe the apposition of a body, its velocity or acceleration relative to frame of reference we use the kinematic equation.
Velocity is the rate of change of displacement. From the newton equation, velocity is derived by the method of integration. Integration of velocity results in the acceleration equation.
If the motion starts from rest and the frame of reference should be the same, the initial velocity will be zero. If the motion starts from rest and the frame of reference should be the same.
It is a scalar quantity. The body attains uniform motion along a straight line when that body is moving with uniform velocity.
The velocity Displacement may or may not be equal to the path length travelled of an object. Distance to unit time is called speed.
Equation integration results in the distance equation.
Then the velocity along x axis
$ \Rightarrow \dfrac{{dx}}{{dt}} = ky$
Then the velocity along x axis
$ \Rightarrow \dfrac{{dy}}{{dt}} = kx$
Now let us find out
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}} = \dfrac{x}{y}$
On cross multiply the terms and we get
$ \Rightarrow ydy = xdx$
Now by integration we get
$ \Rightarrow {y^2} = {x^2} + c$
Hence, the correct answer is option (A).
Note: The motion starts from rest and the frame of reference should be the same. If the initial velocity is zero. The velocity equation integration results in the acceleration equation. Displacement may or may not be equal to the path length travelled of an object. Distance to unit time is called speed.
First find the velocity along x axis then along the y axis.
Then equate the two equations. Then obtain one of the above equations using the above equations.
Formula used:
$v = \dfrac{{dx}}{{dt}}$
$v$ is the velocity and $t$ is the time.
Complete step by step answer:
To describe the apposition of a body, its velocity or acceleration relative to frame of reference we use the kinematic equation.
Velocity is the rate of change of displacement. From the newton equation, velocity is derived by the method of integration. Integration of velocity results in the acceleration equation.
If the motion starts from rest and the frame of reference should be the same, the initial velocity will be zero. If the motion starts from rest and the frame of reference should be the same.
It is a scalar quantity. The body attains uniform motion along a straight line when that body is moving with uniform velocity.
The velocity Displacement may or may not be equal to the path length travelled of an object. Distance to unit time is called speed.
Equation integration results in the distance equation.
Then the velocity along x axis
$ \Rightarrow \dfrac{{dx}}{{dt}} = ky$
Then the velocity along x axis
$ \Rightarrow \dfrac{{dy}}{{dt}} = kx$
Now let us find out
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}} = \dfrac{x}{y}$
On cross multiply the terms and we get
$ \Rightarrow ydy = xdx$
Now by integration we get
$ \Rightarrow {y^2} = {x^2} + c$
Hence, the correct answer is option (A).
Note: The motion starts from rest and the frame of reference should be the same. If the initial velocity is zero. The velocity equation integration results in the acceleration equation. Displacement may or may not be equal to the path length travelled of an object. Distance to unit time is called speed.
Recently Updated Pages
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Class 11 Question and Answer - Your Ultimate Solutions Guide
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE