
A particle is moving along a circle of radius$20/\pi $ with constant tangential acceleration. The velocity of the particle is $80m/s$ at the end of ${2^{nd}}$ revolution after the motion has begun. Then the tangential acceleration is.
Answer
539.4k+ views
Hint Tangential acceleration can be defined as the rate of change of velocity along the tangent when the body is moving in a circular path. In a way, the tangential acceleration is nothing but linear acceleration that is viewed from a reference point that is tangential to the circle. Since the tangential acceleration is linear acceleration from a reference frame, the equations of motion hold true to a body executing tangential acceleration.
Formulas used: We will be using the formulas from the equations of motion. We have velocity and radius of the circular path, thus we can use the equation, ${v^2} - {u^2} = 2as$ where $v$ is the final velocity of the body, $u$ is the initial velocity of the body, $a$ is the tangential acceleration of the body, and $s$ is the displacement covered by the body.
Complete step by step answer:
We know that when a body executes circular motion along a circular path of a fixed radius, then the motion causes a tangential acceleration on the body. This tangential acceleration shows linear characteristics from a reference frame.
Thus, all the equations of motion corresponding to the linear motion will hold true for tangential acceleration. Now from the problem we can infer that the radius of the circular path is $r = \dfrac{{20}}{\pi }$ and the velocity of the particle at the end of the second revolution is $v = 80m/s$ .
Now we know that the circumference of the circle will be the distance travelled by the particle for each revolution. In the second revolution the distance will be, $s = 2\left( {2\pi r} \right)$
Substituting the known values, we get,
$s = 2\left( {2 \times \pi \times \dfrac{{20}}{\pi }} \right)$
$ \Rightarrow s = 80m$
Now that we have the distance travelled, to find the tangential acceleration let us use the equation of motion, ${v^2} - {u^2} = 2as$ .
Let us consider the particle starts from rest, so the initial velocity $u = 0$ .
${\left( {80} \right)^2} - {\left( 0 \right)^2} = 2 \times a \times 80$
$a = \dfrac{{{{\left( {80} \right)}^2}}}{{2 \times 80}}$
Solving for $a$ we get,
$ \Rightarrow a = 40m/{s^2}$
Thus, the tangential acceleration of the particle during the second revolution is $a = 40m/{s^2}$ .
Note: The tangential acceleration is closely related to angular acceleration and is given by,
${a_T} = \alpha r$ where $\alpha $ is the angular acceleration experienced by the body.
Formulas used: We will be using the formulas from the equations of motion. We have velocity and radius of the circular path, thus we can use the equation, ${v^2} - {u^2} = 2as$ where $v$ is the final velocity of the body, $u$ is the initial velocity of the body, $a$ is the tangential acceleration of the body, and $s$ is the displacement covered by the body.
Complete step by step answer:
We know that when a body executes circular motion along a circular path of a fixed radius, then the motion causes a tangential acceleration on the body. This tangential acceleration shows linear characteristics from a reference frame.
Thus, all the equations of motion corresponding to the linear motion will hold true for tangential acceleration. Now from the problem we can infer that the radius of the circular path is $r = \dfrac{{20}}{\pi }$ and the velocity of the particle at the end of the second revolution is $v = 80m/s$ .
Now we know that the circumference of the circle will be the distance travelled by the particle for each revolution. In the second revolution the distance will be, $s = 2\left( {2\pi r} \right)$
Substituting the known values, we get,
$s = 2\left( {2 \times \pi \times \dfrac{{20}}{\pi }} \right)$
$ \Rightarrow s = 80m$
Now that we have the distance travelled, to find the tangential acceleration let us use the equation of motion, ${v^2} - {u^2} = 2as$ .
Let us consider the particle starts from rest, so the initial velocity $u = 0$ .
${\left( {80} \right)^2} - {\left( 0 \right)^2} = 2 \times a \times 80$
$a = \dfrac{{{{\left( {80} \right)}^2}}}{{2 \times 80}}$
Solving for $a$ we get,
$ \Rightarrow a = 40m/{s^2}$
Thus, the tangential acceleration of the particle during the second revolution is $a = 40m/{s^2}$ .
Note: The tangential acceleration is closely related to angular acceleration and is given by,
${a_T} = \alpha r$ where $\alpha $ is the angular acceleration experienced by the body.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

