Answer
Verified
448.5k+ views
Hint: Since the balloon must be flying in the atmosphere, hence it must be experiencing a constant gravitational force towards the earth. After the packet is dropped, the only force acting upon the packet is gravity (neglecting air friction). Hence the net acceleration of the packet is $g=9.8ms^{-2}$. Also since the acceleration is towards downwards, so we'll take it with a negative sign.
Formula used: $v=u+at$, where v is the final velocity of the particle having acceleration ‘a’ after time ‘t’, and ‘u’ is its initial velocity.
Complete step by step answer:
Given that the packet was also moving up along with the balloon. Hence the velocity of both the packet and balloon must be the same. Hence $u =12ms^{-1}$,
$g=-9.8ms^{-2}$ and time t=2sec.
Now using the equation of motion: $v=u+at$, we get
$v=12 + (-9.8)\times 2$
Or $v=12-19.6=-7.6\ ms^{-1}$
Hence the magnitude of the final velocity of the particle is$7.6\ ms^{-1}$. It is important to note that negative sign shows that the velocity is in the direction of ‘g’ or opposite to the direction of movement of the balloon i.e. it’s direction is downwards.
So, the correct answer is “Option D”.
Note: One should note here that the reason of using the equation $v=u+at$, instead of $s=ut+\dfrac 12 at^2$ or $v^2-u^2=2as$ is that there is nowhere in the question we are dealing with distances or displacement. One can use them to relate velocity and displacement, when time is not given ($v^2-u^2=2as$) and when we are asked to find displacement in given time and final velocity is not given ($s=ut+\dfrac 12 at^2$).
Formula used: $v=u+at$, where v is the final velocity of the particle having acceleration ‘a’ after time ‘t’, and ‘u’ is its initial velocity.
Complete step by step answer:
Given that the packet was also moving up along with the balloon. Hence the velocity of both the packet and balloon must be the same. Hence $u =12ms^{-1}$,
$g=-9.8ms^{-2}$ and time t=2sec.
Now using the equation of motion: $v=u+at$, we get
$v=12 + (-9.8)\times 2$
Or $v=12-19.6=-7.6\ ms^{-1}$
Hence the magnitude of the final velocity of the particle is$7.6\ ms^{-1}$. It is important to note that negative sign shows that the velocity is in the direction of ‘g’ or opposite to the direction of movement of the balloon i.e. it’s direction is downwards.
So, the correct answer is “Option D”.
Note: One should note here that the reason of using the equation $v=u+at$, instead of $s=ut+\dfrac 12 at^2$ or $v^2-u^2=2as$ is that there is nowhere in the question we are dealing with distances or displacement. One can use them to relate velocity and displacement, when time is not given ($v^2-u^2=2as$) and when we are asked to find displacement in given time and final velocity is not given ($s=ut+\dfrac 12 at^2$).
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Choose the antonym of the word given below Furious class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE