A newspaper agent sells \[TOI\], \[HT\] and \[NBT\] in equal numbers to \[302\] persons. Seven got \[HT\] and \[NBT\], twelve got \[TOI\] and \[NBT\], nine got \[TOI\] and \[HT\] & three got all the three newspapers. The details are given in the Venn diagram.
What percentage gets \[TOI\] or \[HT\] but not \[NBT\]?
A). More than \[65\% \]
B). Less than\[60\% \]
C). \[ \cong 64\% \]
D). None of these

Last updated date: 23rd Mar 2023
•
Total views: 204.9k
•
Views today: 2.83k
Answer
204.9k+ views
Hint: Here, in the question, we have been given a Venn diagram which represents the data of the newspaper readers of three different brands. We are asked to find the percentage of people who read \[TOI\] or \[HT\] but not \[NBT\]. To find that, we will first find the number of persons who read only \[TOI\], only \[HT\] and only \[NBT\] and then reach the desired result.
Formula used:
\[n\left( {A \cup B \cup C} \right) = n\left( A \right) + n\left( B \right) + n\left( C \right) - n\left( {A \cap B} \right) - n\left( {B \cap C} \right) - n\left( {A \cap C} \right) + n\left( {A \cap B \cap C} \right)\]
Complete step-by-step solution:
Given, Total number of persons who read newspaper, \[n\left( {TOI \cup HT \cup NBT} \right)\]=\[302\]
\[
n\left( {HT \cap NBT} \right) = 7 \\
n\left( {TOI \cap NBT} \right) = 12 \\
n\left( {TOI \cap HT} \right) = 9 \\
n\left( {TOI \cap HT \cap NBT} \right) = 3 \]
Now, using identity, \[n\left( {A \cup B \cup C} \right) = n\left( A \right) + n\left( B \right) + n\left( C \right) - n\left( {A \cap B} \right) - n\left( {B \cap C} \right) - n\left( {A \cap C} \right) + n\left( {A \cap B \cap C} \right)\]
\[n\left( {TOI \cup HT \cup NBT} \right) = n\left( {TOI} \right) + n\left( {HT} \right) + n\left( {NBT} \right) - n\left( {TOI \cap HT} \right) - n\left( {HT \cap NBT} \right) - n\left( {TOI \cap NBT} \right) + n\left( {TOI \cap HT \cap NBT} \right)\]
\[ \Rightarrow 302 = n\left( {TOI} \right) + n\left( {HT} \right) + n\left( {NBT} \right) - 9 - 7 - 12 + 3\]
Now, we are given that \[n\left( {TOI} \right) = n\left( {HT} \right) = n\left( {NBT} \right)\]
Therefore, \[ \Rightarrow 302 = 3 \times n\left( {TOI} \right) - 25\]
Simplifying it, we get,
\[
\Rightarrow n\left( {TOI} \right) = \dfrac{{327}}{3} \\
\Rightarrow n\left( {TOI} \right) = 109 \]
Hence, \[n\left( {TOI} \right) = n\left( {HT} \right) = n\left( {NBT} \right) = 109\]
Now, we will calculate the number of persons who read only \[TOI\], only \[HT\] and only \[NBT\] using Venn diagram
\[
n\left( {TOI\;only} \right) = 109 - \left( {6 + 9 + 3} \right) \\
\Rightarrow n\left( {TOI\;only} \right) = 91 \]
Similarly, we get,
\[
n\left( {HT\;only} \right) = 109 - \left( {6 + 4 + 3} \right) \\
\Rightarrow n\left( {HT\;only} \right) = 96 \],
and
\[
n\left( {NBT\;only} \right) = 109 - \left( {9 + 4 + 3} \right) \\
\Rightarrow n\left( {NBT\;only} \right) = 93 \]
Let us draw a fresh Venn diagram again and shade the required region,
Now, using Venn diagram, No. of persons reading \[TOI \text{ or }HT\text{ but not }NBT\] is calculated as:
\[
n\left( {TOI \text{ or }HT\text{ but not }NBT} \right) = 91 + 96 + 6 \\
\Rightarrow n\left( {TOI \text{ or }HT\text{ but not }NBT} \right) = 193 \\
\]
Percentage of persons reading \[TOI \text{ or }HT\text{ but not }NBT\]=\[\dfrac{{193}}{{302}} \times 100\% \]
\[ = 63.907\]
Hence the correct option is C, \[ \cong 64\% \] is the correct option.
Note: Whenever we face such types of questions, we should try to solve the question using Venn diagram to a possible extent. Venn diagrams are easy to read and understand. We can understand the data just by looking at the Venn diagram. And it is equally important to remember and understand the basic formula related to Venn diagram problems.
Formula used:
\[n\left( {A \cup B \cup C} \right) = n\left( A \right) + n\left( B \right) + n\left( C \right) - n\left( {A \cap B} \right) - n\left( {B \cap C} \right) - n\left( {A \cap C} \right) + n\left( {A \cap B \cap C} \right)\]
Complete step-by-step solution:
Given, Total number of persons who read newspaper, \[n\left( {TOI \cup HT \cup NBT} \right)\]=\[302\]
\[
n\left( {HT \cap NBT} \right) = 7 \\
n\left( {TOI \cap NBT} \right) = 12 \\
n\left( {TOI \cap HT} \right) = 9 \\
n\left( {TOI \cap HT \cap NBT} \right) = 3 \]
Now, using identity, \[n\left( {A \cup B \cup C} \right) = n\left( A \right) + n\left( B \right) + n\left( C \right) - n\left( {A \cap B} \right) - n\left( {B \cap C} \right) - n\left( {A \cap C} \right) + n\left( {A \cap B \cap C} \right)\]
\[n\left( {TOI \cup HT \cup NBT} \right) = n\left( {TOI} \right) + n\left( {HT} \right) + n\left( {NBT} \right) - n\left( {TOI \cap HT} \right) - n\left( {HT \cap NBT} \right) - n\left( {TOI \cap NBT} \right) + n\left( {TOI \cap HT \cap NBT} \right)\]
\[ \Rightarrow 302 = n\left( {TOI} \right) + n\left( {HT} \right) + n\left( {NBT} \right) - 9 - 7 - 12 + 3\]
Now, we are given that \[n\left( {TOI} \right) = n\left( {HT} \right) = n\left( {NBT} \right)\]
Therefore, \[ \Rightarrow 302 = 3 \times n\left( {TOI} \right) - 25\]
Simplifying it, we get,
\[
\Rightarrow n\left( {TOI} \right) = \dfrac{{327}}{3} \\
\Rightarrow n\left( {TOI} \right) = 109 \]
Hence, \[n\left( {TOI} \right) = n\left( {HT} \right) = n\left( {NBT} \right) = 109\]
Now, we will calculate the number of persons who read only \[TOI\], only \[HT\] and only \[NBT\] using Venn diagram
\[
n\left( {TOI\;only} \right) = 109 - \left( {6 + 9 + 3} \right) \\
\Rightarrow n\left( {TOI\;only} \right) = 91 \]
Similarly, we get,
\[
n\left( {HT\;only} \right) = 109 - \left( {6 + 4 + 3} \right) \\
\Rightarrow n\left( {HT\;only} \right) = 96 \],
and
\[
n\left( {NBT\;only} \right) = 109 - \left( {9 + 4 + 3} \right) \\
\Rightarrow n\left( {NBT\;only} \right) = 93 \]
Let us draw a fresh Venn diagram again and shade the required region,

Now, using Venn diagram, No. of persons reading \[TOI \text{ or }HT\text{ but not }NBT\] is calculated as:
\[
n\left( {TOI \text{ or }HT\text{ but not }NBT} \right) = 91 + 96 + 6 \\
\Rightarrow n\left( {TOI \text{ or }HT\text{ but not }NBT} \right) = 193 \\
\]
Percentage of persons reading \[TOI \text{ or }HT\text{ but not }NBT\]=\[\dfrac{{193}}{{302}} \times 100\% \]
\[ = 63.907\]
Hence the correct option is C, \[ \cong 64\% \] is the correct option.
Note: Whenever we face such types of questions, we should try to solve the question using Venn diagram to a possible extent. Venn diagrams are easy to read and understand. We can understand the data just by looking at the Venn diagram. And it is equally important to remember and understand the basic formula related to Venn diagram problems.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
