A motorboat whose speed in still water is $18km/hr$, takes $1$ an hour more to go $24km$upstream than to return downstream to the spot. Find the speed of the stream.
Answer
Verified
510.6k+ views
Hint: Speed of downstream is always greater than the speed of the upstream.
Given that,
Distance covered in upstream and in downstream is $ = 24km$
Speed of the boat in still water $ = 18km/hr$
Let the speed of the stream $ = xkm/hr$
Now,
Speed of the boat in upstream $ = $ speed of the boa in still water $ - $ speed of the stream
$
= 18km/hr - x km/hr \\
= (18 - x)km/hr \\
$
Speed of the boat in downstream $ = $ speed of the boat in still water $ + $ speed of the stream
$
= 18km/hr + x km/hr \\
= \left( {18 + x} \right)km/hr \\
$
We know that,
Time taken for the upstream $ = $ Time taken to cover downstream \[ + 1\]$
\dfrac{{{\text{Distance of upstream}}}}{{{\text{Speed of upstream}}}} = \dfrac{{{\text{Distance of downstream}}}}{{{\text{Speed of downstream}}}} + 1 \\
\\
\dfrac{{24}}{{18 - x}} = \dfrac{{24}}{{18 + x}} + 1 \\
\\
24\left( {18 + x} \right) = 24\left( {18 - x} \right) + \left( {18 - x} \right)\left( {18 + x} \right) \\
\\
432 + 24x = 432 - 24x + 324 - {x^2} \\
\\
24x + 24x = 324 - {x^2} \\
\\
{x^2} + 48x - 324 = 0 \\
$
By solving the quadratic equation, we get
$
{x^2} + 48x - 324 = 0 \\
{x^2} + 54x - 6x - 324 = 0 \\
\left( {x + 54} \right)\left( {x - 6} \right) = 0 \\
$
Thus, we have two values of $x$ i.e. $x = 6, - 54$
Therefore, the speed of the stream is $6km/hr$.
Note: In this type of problem the value of the speed of the stream cannot be negative. Hence, we neglect $x = - 54$.
Given that,
Distance covered in upstream and in downstream is $ = 24km$
Speed of the boat in still water $ = 18km/hr$
Let the speed of the stream $ = xkm/hr$
Now,
Speed of the boat in upstream $ = $ speed of the boa in still water $ - $ speed of the stream
$
= 18km/hr - x km/hr \\
= (18 - x)km/hr \\
$
Speed of the boat in downstream $ = $ speed of the boat in still water $ + $ speed of the stream
$
= 18km/hr + x km/hr \\
= \left( {18 + x} \right)km/hr \\
$
We know that,
Time taken for the upstream $ = $ Time taken to cover downstream \[ + 1\]$
\dfrac{{{\text{Distance of upstream}}}}{{{\text{Speed of upstream}}}} = \dfrac{{{\text{Distance of downstream}}}}{{{\text{Speed of downstream}}}} + 1 \\
\\
\dfrac{{24}}{{18 - x}} = \dfrac{{24}}{{18 + x}} + 1 \\
\\
24\left( {18 + x} \right) = 24\left( {18 - x} \right) + \left( {18 - x} \right)\left( {18 + x} \right) \\
\\
432 + 24x = 432 - 24x + 324 - {x^2} \\
\\
24x + 24x = 324 - {x^2} \\
\\
{x^2} + 48x - 324 = 0 \\
$
By solving the quadratic equation, we get
$
{x^2} + 48x - 324 = 0 \\
{x^2} + 54x - 6x - 324 = 0 \\
\left( {x + 54} \right)\left( {x - 6} \right) = 0 \\
$
Thus, we have two values of $x$ i.e. $x = 6, - 54$
Therefore, the speed of the stream is $6km/hr$.
Note: In this type of problem the value of the speed of the stream cannot be negative. Hence, we neglect $x = - 54$.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE