
A motorboat whose speed in still water is $18km/hr$, takes $1$ an hour more to go $24km$upstream than to return downstream to the spot. Find the speed of the stream.
Answer
612.3k+ views
Hint: Speed of downstream is always greater than the speed of the upstream.
Given that,
Distance covered in upstream and in downstream is $ = 24km$
Speed of the boat in still water $ = 18km/hr$
Let the speed of the stream $ = xkm/hr$
Now,
Speed of the boat in upstream $ = $ speed of the boa in still water $ - $ speed of the stream
$
= 18km/hr - x km/hr \\
= (18 - x)km/hr \\
$
Speed of the boat in downstream $ = $ speed of the boat in still water $ + $ speed of the stream
$
= 18km/hr + x km/hr \\
= \left( {18 + x} \right)km/hr \\
$
We know that,
Time taken for the upstream $ = $ Time taken to cover downstream \[ + 1\]$
\dfrac{{{\text{Distance of upstream}}}}{{{\text{Speed of upstream}}}} = \dfrac{{{\text{Distance of downstream}}}}{{{\text{Speed of downstream}}}} + 1 \\
\\
\dfrac{{24}}{{18 - x}} = \dfrac{{24}}{{18 + x}} + 1 \\
\\
24\left( {18 + x} \right) = 24\left( {18 - x} \right) + \left( {18 - x} \right)\left( {18 + x} \right) \\
\\
432 + 24x = 432 - 24x + 324 - {x^2} \\
\\
24x + 24x = 324 - {x^2} \\
\\
{x^2} + 48x - 324 = 0 \\
$
By solving the quadratic equation, we get
$
{x^2} + 48x - 324 = 0 \\
{x^2} + 54x - 6x - 324 = 0 \\
\left( {x + 54} \right)\left( {x - 6} \right) = 0 \\
$
Thus, we have two values of $x$ i.e. $x = 6, - 54$
Therefore, the speed of the stream is $6km/hr$.
Note: In this type of problem the value of the speed of the stream cannot be negative. Hence, we neglect $x = - 54$.
Given that,
Distance covered in upstream and in downstream is $ = 24km$
Speed of the boat in still water $ = 18km/hr$
Let the speed of the stream $ = xkm/hr$
Now,
Speed of the boat in upstream $ = $ speed of the boa in still water $ - $ speed of the stream
$
= 18km/hr - x km/hr \\
= (18 - x)km/hr \\
$
Speed of the boat in downstream $ = $ speed of the boat in still water $ + $ speed of the stream
$
= 18km/hr + x km/hr \\
= \left( {18 + x} \right)km/hr \\
$
We know that,
Time taken for the upstream $ = $ Time taken to cover downstream \[ + 1\]$
\dfrac{{{\text{Distance of upstream}}}}{{{\text{Speed of upstream}}}} = \dfrac{{{\text{Distance of downstream}}}}{{{\text{Speed of downstream}}}} + 1 \\
\\
\dfrac{{24}}{{18 - x}} = \dfrac{{24}}{{18 + x}} + 1 \\
\\
24\left( {18 + x} \right) = 24\left( {18 - x} \right) + \left( {18 - x} \right)\left( {18 + x} \right) \\
\\
432 + 24x = 432 - 24x + 324 - {x^2} \\
\\
24x + 24x = 324 - {x^2} \\
\\
{x^2} + 48x - 324 = 0 \\
$
By solving the quadratic equation, we get
$
{x^2} + 48x - 324 = 0 \\
{x^2} + 54x - 6x - 324 = 0 \\
\left( {x + 54} \right)\left( {x - 6} \right) = 0 \\
$
Thus, we have two values of $x$ i.e. $x = 6, - 54$
Therefore, the speed of the stream is $6km/hr$.
Note: In this type of problem the value of the speed of the stream cannot be negative. Hence, we neglect $x = - 54$.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

