
A motor pump lifts \[300\,{\text{kg}}\] of water per minute from a well \[20\,{\text{m}}\] deep and delivers to height of \[20\,{\text{m}}\]. Its power is
A. \[3\,{\text{kW}}\]
B. \[1.96\,{\text{kW}}\]
C. \[0.98\,{\text{kW}}\]
D. \[3.92\,{\text{kW}}\]
Answer
546k+ views
Hint:Use the formula for the relation between the work done and change in potential energy of an object. Use the formula for the potential energy of an object. Also use the formula for the power in terms of work done and time. First determine the work done by the motor pump from the initial and final potential energies of the water. Then calculate the power of the motor.
Formulae used:
The work done \[W\] is given by
\[W = - \Delta U\] …… (1)
Here, \[\Delta U\] is the change in potential energy.
The potential energy \[U\] of an object is given by
\[U = mgh\] …… (2)
Here, \[m\] is the mass of the object, \[\gamma \] is acceleration due to gravity and \[h\] is the height of the object from the ground.
The power \[P\] is given by
\[P = \dfrac{W}{t}\] …… (3)
Here, \[W\] is the work done and \[t\] is time.
Complete step by step answer:
We have given that the mass of water lifted by the motor pump in one minute is \[300\,{\text{kg}}\].
\[m = 300\,{\text{kg}}\]
\[\Rightarrow t = 1\,{\text{min}}\]
The depth of the well is \[20\,{\text{m}}\] and the height up to which the water is being delivered is \[20\,{\text{m}}\].
\[d = 20\,{\text{m}}\]
\[\Rightarrow h = 20\,{\text{m}}\]
We have asked to calculate the power of the pump.Let us first calculate the work done by the pump.The initial potential energy of the water is zero.
\[{U_i} = 0\,{\text{J}}\]
The final potential energy of the water is given by
\[{U_f} = mg\left( {d + h} \right)\]
According to equation (1), the work done by the motor pump is
\[W = - \left( {{U_i} - {U_f}} \right)\]
Substitute \[0\,{\text{J}}\] for \[{U_i}\] and \[mg\left( {d + h} \right)\] for \[{U_f}\] in the above equation.
\[W = - \left[ {\left( {0\,{\text{J}}} \right) - \left( {mg\left( {d + h} \right)} \right)} \right]\]
\[ \Rightarrow W = mg\left( {d + h} \right)\]
Substitute \[mg\left( {d + h} \right)\] for \[W\] in equation (3).
\[P = \dfrac{{mg\left( {d + h} \right)}}{t}\]
Substitute \[300\,{\text{kg}}\] for \[m\], \[9.8\,{\text{m/}}{{\text{s}}^2}\] for \[g\], \[20\,{\text{m}}\] for \[d\], \[20\,{\text{m}}\] for \[h\] and \[1\,{\text{min}}\] for \[t\] in the above equation.
\[P = \dfrac{{\left( {300\,{\text{kg}}} \right)\left( {9.8\,{\text{m/}}{{\text{s}}^2}} \right)\left( {20\,{\text{m}} + 20\,{\text{m}}} \right)}}{{1\,{\text{min}}}}\]
\[ \Rightarrow P = \dfrac{{\left( {300\,{\text{kg}}} \right)\left( {9.8\,{\text{m/}}{{\text{s}}^2}} \right)\left( {20\,{\text{m}} + 20\,{\text{m}}} \right)}}{{60\,{\text{s}}}}\]
\[ \Rightarrow P = 1960\,{\text{J}}\]
\[ \therefore P = 1.96\,{\text{kJ}}\]
Therefore, the power of the pump is \[1.96\,{\text{kJ}}\].
Hence, the correct option is B.
Note: The students should not forget to convert the unit of time in the SI system of units as all the units used in the formula are in the SI system of units. Also the students may directly use the formula for potential energy. But the students should keep in mind that the work done is equal to the negative of change in potential energy and not equal to the potential energy.
Formulae used:
The work done \[W\] is given by
\[W = - \Delta U\] …… (1)
Here, \[\Delta U\] is the change in potential energy.
The potential energy \[U\] of an object is given by
\[U = mgh\] …… (2)
Here, \[m\] is the mass of the object, \[\gamma \] is acceleration due to gravity and \[h\] is the height of the object from the ground.
The power \[P\] is given by
\[P = \dfrac{W}{t}\] …… (3)
Here, \[W\] is the work done and \[t\] is time.
Complete step by step answer:
We have given that the mass of water lifted by the motor pump in one minute is \[300\,{\text{kg}}\].
\[m = 300\,{\text{kg}}\]
\[\Rightarrow t = 1\,{\text{min}}\]
The depth of the well is \[20\,{\text{m}}\] and the height up to which the water is being delivered is \[20\,{\text{m}}\].
\[d = 20\,{\text{m}}\]
\[\Rightarrow h = 20\,{\text{m}}\]
We have asked to calculate the power of the pump.Let us first calculate the work done by the pump.The initial potential energy of the water is zero.
\[{U_i} = 0\,{\text{J}}\]
The final potential energy of the water is given by
\[{U_f} = mg\left( {d + h} \right)\]
According to equation (1), the work done by the motor pump is
\[W = - \left( {{U_i} - {U_f}} \right)\]
Substitute \[0\,{\text{J}}\] for \[{U_i}\] and \[mg\left( {d + h} \right)\] for \[{U_f}\] in the above equation.
\[W = - \left[ {\left( {0\,{\text{J}}} \right) - \left( {mg\left( {d + h} \right)} \right)} \right]\]
\[ \Rightarrow W = mg\left( {d + h} \right)\]
Substitute \[mg\left( {d + h} \right)\] for \[W\] in equation (3).
\[P = \dfrac{{mg\left( {d + h} \right)}}{t}\]
Substitute \[300\,{\text{kg}}\] for \[m\], \[9.8\,{\text{m/}}{{\text{s}}^2}\] for \[g\], \[20\,{\text{m}}\] for \[d\], \[20\,{\text{m}}\] for \[h\] and \[1\,{\text{min}}\] for \[t\] in the above equation.
\[P = \dfrac{{\left( {300\,{\text{kg}}} \right)\left( {9.8\,{\text{m/}}{{\text{s}}^2}} \right)\left( {20\,{\text{m}} + 20\,{\text{m}}} \right)}}{{1\,{\text{min}}}}\]
\[ \Rightarrow P = \dfrac{{\left( {300\,{\text{kg}}} \right)\left( {9.8\,{\text{m/}}{{\text{s}}^2}} \right)\left( {20\,{\text{m}} + 20\,{\text{m}}} \right)}}{{60\,{\text{s}}}}\]
\[ \Rightarrow P = 1960\,{\text{J}}\]
\[ \therefore P = 1.96\,{\text{kJ}}\]
Therefore, the power of the pump is \[1.96\,{\text{kJ}}\].
Hence, the correct option is B.
Note: The students should not forget to convert the unit of time in the SI system of units as all the units used in the formula are in the SI system of units. Also the students may directly use the formula for potential energy. But the students should keep in mind that the work done is equal to the negative of change in potential energy and not equal to the potential energy.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

