Answer
Verified
409.5k+ views
Hint:Use the formula for the relation between the work done and change in potential energy of an object. Use the formula for the potential energy of an object. Also use the formula for the power in terms of work done and time. First determine the work done by the motor pump from the initial and final potential energies of the water. Then calculate the power of the motor.
Formulae used:
The work done \[W\] is given by
\[W = - \Delta U\] …… (1)
Here, \[\Delta U\] is the change in potential energy.
The potential energy \[U\] of an object is given by
\[U = mgh\] …… (2)
Here, \[m\] is the mass of the object, \[\gamma \] is acceleration due to gravity and \[h\] is the height of the object from the ground.
The power \[P\] is given by
\[P = \dfrac{W}{t}\] …… (3)
Here, \[W\] is the work done and \[t\] is time.
Complete step by step answer:
We have given that the mass of water lifted by the motor pump in one minute is \[300\,{\text{kg}}\].
\[m = 300\,{\text{kg}}\]
\[\Rightarrow t = 1\,{\text{min}}\]
The depth of the well is \[20\,{\text{m}}\] and the height up to which the water is being delivered is \[20\,{\text{m}}\].
\[d = 20\,{\text{m}}\]
\[\Rightarrow h = 20\,{\text{m}}\]
We have asked to calculate the power of the pump.Let us first calculate the work done by the pump.The initial potential energy of the water is zero.
\[{U_i} = 0\,{\text{J}}\]
The final potential energy of the water is given by
\[{U_f} = mg\left( {d + h} \right)\]
According to equation (1), the work done by the motor pump is
\[W = - \left( {{U_i} - {U_f}} \right)\]
Substitute \[0\,{\text{J}}\] for \[{U_i}\] and \[mg\left( {d + h} \right)\] for \[{U_f}\] in the above equation.
\[W = - \left[ {\left( {0\,{\text{J}}} \right) - \left( {mg\left( {d + h} \right)} \right)} \right]\]
\[ \Rightarrow W = mg\left( {d + h} \right)\]
Substitute \[mg\left( {d + h} \right)\] for \[W\] in equation (3).
\[P = \dfrac{{mg\left( {d + h} \right)}}{t}\]
Substitute \[300\,{\text{kg}}\] for \[m\], \[9.8\,{\text{m/}}{{\text{s}}^2}\] for \[g\], \[20\,{\text{m}}\] for \[d\], \[20\,{\text{m}}\] for \[h\] and \[1\,{\text{min}}\] for \[t\] in the above equation.
\[P = \dfrac{{\left( {300\,{\text{kg}}} \right)\left( {9.8\,{\text{m/}}{{\text{s}}^2}} \right)\left( {20\,{\text{m}} + 20\,{\text{m}}} \right)}}{{1\,{\text{min}}}}\]
\[ \Rightarrow P = \dfrac{{\left( {300\,{\text{kg}}} \right)\left( {9.8\,{\text{m/}}{{\text{s}}^2}} \right)\left( {20\,{\text{m}} + 20\,{\text{m}}} \right)}}{{60\,{\text{s}}}}\]
\[ \Rightarrow P = 1960\,{\text{J}}\]
\[ \therefore P = 1.96\,{\text{kJ}}\]
Therefore, the power of the pump is \[1.96\,{\text{kJ}}\].
Hence, the correct option is B.
Note: The students should not forget to convert the unit of time in the SI system of units as all the units used in the formula are in the SI system of units. Also the students may directly use the formula for potential energy. But the students should keep in mind that the work done is equal to the negative of change in potential energy and not equal to the potential energy.
Formulae used:
The work done \[W\] is given by
\[W = - \Delta U\] …… (1)
Here, \[\Delta U\] is the change in potential energy.
The potential energy \[U\] of an object is given by
\[U = mgh\] …… (2)
Here, \[m\] is the mass of the object, \[\gamma \] is acceleration due to gravity and \[h\] is the height of the object from the ground.
The power \[P\] is given by
\[P = \dfrac{W}{t}\] …… (3)
Here, \[W\] is the work done and \[t\] is time.
Complete step by step answer:
We have given that the mass of water lifted by the motor pump in one minute is \[300\,{\text{kg}}\].
\[m = 300\,{\text{kg}}\]
\[\Rightarrow t = 1\,{\text{min}}\]
The depth of the well is \[20\,{\text{m}}\] and the height up to which the water is being delivered is \[20\,{\text{m}}\].
\[d = 20\,{\text{m}}\]
\[\Rightarrow h = 20\,{\text{m}}\]
We have asked to calculate the power of the pump.Let us first calculate the work done by the pump.The initial potential energy of the water is zero.
\[{U_i} = 0\,{\text{J}}\]
The final potential energy of the water is given by
\[{U_f} = mg\left( {d + h} \right)\]
According to equation (1), the work done by the motor pump is
\[W = - \left( {{U_i} - {U_f}} \right)\]
Substitute \[0\,{\text{J}}\] for \[{U_i}\] and \[mg\left( {d + h} \right)\] for \[{U_f}\] in the above equation.
\[W = - \left[ {\left( {0\,{\text{J}}} \right) - \left( {mg\left( {d + h} \right)} \right)} \right]\]
\[ \Rightarrow W = mg\left( {d + h} \right)\]
Substitute \[mg\left( {d + h} \right)\] for \[W\] in equation (3).
\[P = \dfrac{{mg\left( {d + h} \right)}}{t}\]
Substitute \[300\,{\text{kg}}\] for \[m\], \[9.8\,{\text{m/}}{{\text{s}}^2}\] for \[g\], \[20\,{\text{m}}\] for \[d\], \[20\,{\text{m}}\] for \[h\] and \[1\,{\text{min}}\] for \[t\] in the above equation.
\[P = \dfrac{{\left( {300\,{\text{kg}}} \right)\left( {9.8\,{\text{m/}}{{\text{s}}^2}} \right)\left( {20\,{\text{m}} + 20\,{\text{m}}} \right)}}{{1\,{\text{min}}}}\]
\[ \Rightarrow P = \dfrac{{\left( {300\,{\text{kg}}} \right)\left( {9.8\,{\text{m/}}{{\text{s}}^2}} \right)\left( {20\,{\text{m}} + 20\,{\text{m}}} \right)}}{{60\,{\text{s}}}}\]
\[ \Rightarrow P = 1960\,{\text{J}}\]
\[ \therefore P = 1.96\,{\text{kJ}}\]
Therefore, the power of the pump is \[1.96\,{\text{kJ}}\].
Hence, the correct option is B.
Note: The students should not forget to convert the unit of time in the SI system of units as all the units used in the formula are in the SI system of units. Also the students may directly use the formula for potential energy. But the students should keep in mind that the work done is equal to the negative of change in potential energy and not equal to the potential energy.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths