Answer
Verified
383.9k+ views
Hint: Assume a variable x which will represent the speed of the stream in km/hr. Since it is given that the speed of the motorboat is 20 km/hr in still water, the speed of the motorboat while going downstream will be equal to (x+20) km/hr and the speed of the motorboat while going upstream will be equal to (20-x) km/hr. Using this information, we can solve this question.
Complete step-by-step answer:
Before proceeding with the question, we must know the formulas that will be required to solve this question.
We have a formula, time = distance/speed $......................\left( 1 \right)$
In the question, it is given that the motorboat takes 1 hour more to go 48 km upstream than to return downstream to the same spot. Also, it is given that the speed of the motor boat in still water is equal to 20 km/hr. We are required to find the speed of the stream.
Let us assume the speed of the stream = x km/hr.
It is given that the speed of the motor boat in still water is equal to 20 km/hr.
While going upstream, the direction of the stream will be against the direction of the motorboat. So, the speed of the motorboat while going upstream will be equal to (20-x) km/hr. It is given that the distance to be travelled is equal to 48 km. So, using formula $\left( 1 \right)$, the time taken by the motorboat to go upstream is equal to $\dfrac{48}{20-x}...........\left( 2 \right)$
While going downstream, the direction of the stream will be along with the direction of the motorboat. So, the speed of the motorboat while going downstream will be equal to (20+x) km/hr. It is given that the distance to be travelled is equal to 48 km. So, using formula $\left( 1 \right)$, the time taken by the motorboat to go downstream is equal to $\dfrac{48}{20+x}...........\left( 3 \right)$
In the question, it is given that the motor boat takes 1 hour more to go 48 km upstream than to return downstream. So, we can say that,
(Time taken while going downstream) + 1 = Time taken while going upstream
Substituting these times from equation $\left( 1 \right)$ and equation $\left( 3 \right)$, we get,
\[\begin{align}
& \dfrac{48}{20+x}+1=\dfrac{48}{20-x} \\
& \Rightarrow \dfrac{48}{20-x}-\dfrac{48}{20+x}=1 \\
& \Rightarrow \left( 48 \right)\left( \dfrac{\left( 20+x \right)-\left( 20-x \right)}{\left( 20-x \right)\left( 20+x \right)} \right)=1 \\
& \Rightarrow \left( 48 \right)\left( 2x \right)=\left( 20-x \right)\left( 20+x \right) \\
& \Rightarrow 96x=400+20x-20x-{{x}^{2}} \\
& \Rightarrow {{x}^{2}}+96x-400=0 \\
& \Rightarrow {{x}^{2}}-4x+100x-400=0 \\
& \Rightarrow x\left( x-4 \right)+100\left( x-4 \right)=0 \\
& \Rightarrow \left( x+100 \right)\left( x-4 \right)=0 \\
& \Rightarrow x=4,x=-100 \\
\end{align}\]
Since speed cannot be negative, hence, the speed of the stream is 4 km/hr.
Note: There is a possibility that one may commit a mistake while writing the equation that is relating the time taken while going upstream and going downstream. There is a possibility that one may write it ha \[\dfrac{48}{20+x}=\dfrac{48}{20-x}+1\] instead of \[\dfrac{48}{20+x}+1=\dfrac{48}{20-x}\]. So, in order to avoid this mistake, one has to read the question carefully.
Complete step-by-step answer:
Before proceeding with the question, we must know the formulas that will be required to solve this question.
We have a formula, time = distance/speed $......................\left( 1 \right)$
In the question, it is given that the motorboat takes 1 hour more to go 48 km upstream than to return downstream to the same spot. Also, it is given that the speed of the motor boat in still water is equal to 20 km/hr. We are required to find the speed of the stream.
Let us assume the speed of the stream = x km/hr.
It is given that the speed of the motor boat in still water is equal to 20 km/hr.
While going upstream, the direction of the stream will be against the direction of the motorboat. So, the speed of the motorboat while going upstream will be equal to (20-x) km/hr. It is given that the distance to be travelled is equal to 48 km. So, using formula $\left( 1 \right)$, the time taken by the motorboat to go upstream is equal to $\dfrac{48}{20-x}...........\left( 2 \right)$
While going downstream, the direction of the stream will be along with the direction of the motorboat. So, the speed of the motorboat while going downstream will be equal to (20+x) km/hr. It is given that the distance to be travelled is equal to 48 km. So, using formula $\left( 1 \right)$, the time taken by the motorboat to go downstream is equal to $\dfrac{48}{20+x}...........\left( 3 \right)$
In the question, it is given that the motor boat takes 1 hour more to go 48 km upstream than to return downstream. So, we can say that,
(Time taken while going downstream) + 1 = Time taken while going upstream
Substituting these times from equation $\left( 1 \right)$ and equation $\left( 3 \right)$, we get,
\[\begin{align}
& \dfrac{48}{20+x}+1=\dfrac{48}{20-x} \\
& \Rightarrow \dfrac{48}{20-x}-\dfrac{48}{20+x}=1 \\
& \Rightarrow \left( 48 \right)\left( \dfrac{\left( 20+x \right)-\left( 20-x \right)}{\left( 20-x \right)\left( 20+x \right)} \right)=1 \\
& \Rightarrow \left( 48 \right)\left( 2x \right)=\left( 20-x \right)\left( 20+x \right) \\
& \Rightarrow 96x=400+20x-20x-{{x}^{2}} \\
& \Rightarrow {{x}^{2}}+96x-400=0 \\
& \Rightarrow {{x}^{2}}-4x+100x-400=0 \\
& \Rightarrow x\left( x-4 \right)+100\left( x-4 \right)=0 \\
& \Rightarrow \left( x+100 \right)\left( x-4 \right)=0 \\
& \Rightarrow x=4,x=-100 \\
\end{align}\]
Since speed cannot be negative, hence, the speed of the stream is 4 km/hr.
Note: There is a possibility that one may commit a mistake while writing the equation that is relating the time taken while going upstream and going downstream. There is a possibility that one may write it ha \[\dfrac{48}{20+x}=\dfrac{48}{20-x}+1\] instead of \[\dfrac{48}{20+x}+1=\dfrac{48}{20-x}\]. So, in order to avoid this mistake, one has to read the question carefully.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell