A man lends Rs.12500 at 12% for the first year, at 15% for the second year and at 18% for the third year. If the rates of interest are compounded yearly; find the difference between the C.I. of the first year and the compound interest for the third year.
Last updated date: 20th Mar 2023
•
Total views: 306k
•
Views today: 2.85k
Answer
306k+ views
Hint: We are going to solve the given problem by using the formula of compound interest.
Formula for compound interest is $A = P\left( {1 + \frac{R}{{100}}} \right)$
Where, A is the amount, P is the principal (initial) amount, R is the rate of interest in %.
In the first year P = 12500, R = 12%
$A = 12500\left( {1 + \frac{{12}}{{100}}} \right)$
$A = 12500\left( {\frac{{112}}{{100}}} \right) = 14000$
Then the interest for the first year = Rs.14000 – Rs.12500 = Rs.1500
In Second year,
P=Rs.14000
Given R=15%
$A = 14000\left( {1 + \frac{{15}}{{100}}} \right) = 16100$
In Third year,
P = 16100
Given R = 18%
$A = 16100\left( {\frac{{115}}{{100}}} \right) = 16100$
$A = 16100\left( {\frac{{118}}{{100}}} \right) = 18898$
Then the interest for the third year = Rs.18998 – Rs.16100 = Rs.2898
$\therefore $Difference of interest between third and first year = Rs.2898 – Rs.1500 = Rs.1398
Note: Compound interest is a method of calculating interest where the interest earned over time is added to the principal amount.
Formula for compound interest is $A = P\left( {1 + \frac{R}{{100}}} \right)$
Where, A is the amount, P is the principal (initial) amount, R is the rate of interest in %.
In the first year P = 12500, R = 12%
$A = 12500\left( {1 + \frac{{12}}{{100}}} \right)$
$A = 12500\left( {\frac{{112}}{{100}}} \right) = 14000$
Then the interest for the first year = Rs.14000 – Rs.12500 = Rs.1500
In Second year,
P=Rs.14000
Given R=15%
$A = 14000\left( {1 + \frac{{15}}{{100}}} \right) = 16100$
In Third year,
P = 16100
Given R = 18%
$A = 16100\left( {\frac{{115}}{{100}}} \right) = 16100$
$A = 16100\left( {\frac{{118}}{{100}}} \right) = 18898$
Then the interest for the third year = Rs.18998 – Rs.16100 = Rs.2898
$\therefore $Difference of interest between third and first year = Rs.2898 – Rs.1500 = Rs.1398
Note: Compound interest is a method of calculating interest where the interest earned over time is added to the principal amount.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
