Answer
Verified
430.2k+ views
Hint: Make the geometric construction of the height of the pole and the shadow coasted by the pole using triangle. For each 1 m height of both pole and man, the coasted shadow should be the same. Then use the properties of triangles to determine the height of the man.
Complete step by step answer:
We can draw the geometric representation of the height of the pole and shadow of the pole as shown in the figure below.
In the above figure, AC is the height of the pole, AB is the height of the man, AE is the length of the shadow coasted by the pole and AD is the length of the shadow coasted by the man.
From the geometry of the above figure, we can write,
\[ \Rightarrow\dfrac{{{\text{AC}}}}{{{\text{AE}}}} = \dfrac{{\text{x}}}{{{\text{AD}}}}\]
Here, x is the height of the man.
Substitute 6 m for AC, 8 m for AE, and 2.4 m for AD in the above equation.
\[ \Rightarrow\dfrac{{{\text{6}}\,m}}{{{\text{8}}\,m}} = \dfrac{{\text{x}}}{{{\text{2}}{\text{.4}}\,m}}\]
\[ \Rightarrow x = \dfrac{{\left( {2.4\,m} \right)\left( {6\,m} \right)}}{{8\,m}}\]
\[ \Rightarrow\therefore x = 1.8\,m\]
So, the correct answer is option (A).
Note:You can also solve this question by determining how much shadow is coasted by 1 m height of the pole. Then multiplying this value by the length of the shadow coasted by the man you can get the height of the man.
Complete step by step answer:
We can draw the geometric representation of the height of the pole and shadow of the pole as shown in the figure below.
In the above figure, AC is the height of the pole, AB is the height of the man, AE is the length of the shadow coasted by the pole and AD is the length of the shadow coasted by the man.
From the geometry of the above figure, we can write,
\[ \Rightarrow\dfrac{{{\text{AC}}}}{{{\text{AE}}}} = \dfrac{{\text{x}}}{{{\text{AD}}}}\]
Here, x is the height of the man.
Substitute 6 m for AC, 8 m for AE, and 2.4 m for AD in the above equation.
\[ \Rightarrow\dfrac{{{\text{6}}\,m}}{{{\text{8}}\,m}} = \dfrac{{\text{x}}}{{{\text{2}}{\text{.4}}\,m}}\]
\[ \Rightarrow x = \dfrac{{\left( {2.4\,m} \right)\left( {6\,m} \right)}}{{8\,m}}\]
\[ \Rightarrow\therefore x = 1.8\,m\]
So, the correct answer is option (A).
Note:You can also solve this question by determining how much shadow is coasted by 1 m height of the pole. Then multiplying this value by the length of the shadow coasted by the man you can get the height of the man.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Difference Between Plant Cell and Animal Cell