
A leakage begins in the water tank at position P as shown in the figure. The initial gauge pressure at P was $5 \times {10^5}N/{m^2}$ .if the density of water is $1000kg/{m^3}$ the initial velocity with which water gushes out is:
A) $3.2m/\sec $
B) $32m/\sec $
C) $28m/\sec $
D) $2.8m/\sec $
Answer
574.8k+ views
Hint:
To solve this question we use Bernoulli’s theorem which is ${P_1} + \dfrac{1}{2}\rho {v_1}^2 + \rho g{h_1} = {P_2} + \dfrac{1}{2}\rho {v_2}^2 + \rho g{h_2}$
And we know the gauge pressure is pressure above that of the atmospheric pressure at that point can be represented as $P - {P_{atm}} = \rho gh$ .
Where $P \Rightarrow $ is the total pressure at that point or at that level
Step by step solution:
First we mark another point Q at the same level of P let as assume the point P and Q are $h$ height below the free surface of the water tank.
As shown in figure.
From figure we can write the gauge pressure at point Q is ${P_Q} - {P_{atm}} = \rho gh$
Where $\rho \Rightarrow $ density of water
${P_Q} \Rightarrow $ Total pressure at point Q
$h \Rightarrow $ Height from free surface
So from this we can Wright the pressure at point Q is
$ \Rightarrow {P_Q} = {P_{atm}} + \rho gh$ ......... (1)
Pressure at point P is equal to the atmospheric pressure
${P_P} = {P_{atm}}$ ......... (2)
Velocity at point Q is approximately equal to zero
${v_Q} = 0$....... (3)
Let us assume the velocity at point P is with which water comes out is ${v_P}$
Step 2
Now we apply Bernoulli’s theorem for horizontal points P and Q.
$ \Rightarrow {P_P} + \dfrac{1}{2}\rho {v_P}^2 + \rho g{h_P} = {P_Q} + \dfrac{1}{2}\rho {v_Q}^2 + \rho g{h_Q}$
Because point P and Q are at same horizontal level ${h_P} = {h_Q}$ so Bernoulli theorem reduced to
$ \Rightarrow {P_P} + \dfrac{1}{2}\rho {v_P}^2 = {P_Q} + \dfrac{1}{2}\rho {v_Q}^2$
Put all values in this equation from (1) (2) and (3)
\[ \Rightarrow {P_{atm}} + \dfrac{1}{2}\rho {v_P}^2 = \left( {{P_{atm}} + \rho gh} \right) + \dfrac{1}{2}\rho {\left( 0 \right)^2}\]
\[ \Rightarrow \dfrac{1}{2}\rho {v_P}^2 = \rho gh\]
Now ${P_Q} - {P_{atm}} = \rho gh = 5 \times {10^5}N/{m^2}$ given in question
Put $\rho gh = 5 \times {10^5}$ and density of water $\rho = 1000kg/{m^3}$
\[ \Rightarrow \dfrac{1}{2} \times 1000 \times {v_P}^2 = 5 \times {10^5}\]
\[ \Rightarrow {v_P}^2 = \dfrac{{5 \times {{10}^5} \times 2}}{{1000}}\]
Further solving
\[ \Rightarrow {v_P} = \sqrt {\dfrac{{5 \times {{10}^5} \times 2}}{{1000}}} \]
\[ \Rightarrow {v_P} = \sqrt {1000} \]
\[ \Rightarrow {v_P} = 31.62m/\sec \]
Hence the velocity to exit the water tank at point P is approximately $32m/\sec $
therefore Option B is correct
Note:
We can solve this question by another short method which is given below
We know gauge pressure $P = \rho gh$ from this we can find height of hole from free surface
$
\Rightarrow 5 \times {10^5} = 1000 \times 10 \times h \\
\Rightarrow h = 50m \\
$
And now apply Torricelli’s theorem formula velocity of Efflux $v = \sqrt {2gh} $
$
\Rightarrow v = \sqrt {2 \times 10 \times 50} \\
\Rightarrow v = \sqrt {1000} \\
\therefore v = 31.62m/\sec \\
$
To solve this question we use Bernoulli’s theorem which is ${P_1} + \dfrac{1}{2}\rho {v_1}^2 + \rho g{h_1} = {P_2} + \dfrac{1}{2}\rho {v_2}^2 + \rho g{h_2}$
And we know the gauge pressure is pressure above that of the atmospheric pressure at that point can be represented as $P - {P_{atm}} = \rho gh$ .
Where $P \Rightarrow $ is the total pressure at that point or at that level
Step by step solution:
First we mark another point Q at the same level of P let as assume the point P and Q are $h$ height below the free surface of the water tank.
As shown in figure.
From figure we can write the gauge pressure at point Q is ${P_Q} - {P_{atm}} = \rho gh$
Where $\rho \Rightarrow $ density of water
${P_Q} \Rightarrow $ Total pressure at point Q
$h \Rightarrow $ Height from free surface
So from this we can Wright the pressure at point Q is
$ \Rightarrow {P_Q} = {P_{atm}} + \rho gh$ ......... (1)
Pressure at point P is equal to the atmospheric pressure
${P_P} = {P_{atm}}$ ......... (2)
Velocity at point Q is approximately equal to zero
${v_Q} = 0$....... (3)
Let us assume the velocity at point P is with which water comes out is ${v_P}$
Step 2
Now we apply Bernoulli’s theorem for horizontal points P and Q.
$ \Rightarrow {P_P} + \dfrac{1}{2}\rho {v_P}^2 + \rho g{h_P} = {P_Q} + \dfrac{1}{2}\rho {v_Q}^2 + \rho g{h_Q}$
Because point P and Q are at same horizontal level ${h_P} = {h_Q}$ so Bernoulli theorem reduced to
$ \Rightarrow {P_P} + \dfrac{1}{2}\rho {v_P}^2 = {P_Q} + \dfrac{1}{2}\rho {v_Q}^2$
Put all values in this equation from (1) (2) and (3)
\[ \Rightarrow {P_{atm}} + \dfrac{1}{2}\rho {v_P}^2 = \left( {{P_{atm}} + \rho gh} \right) + \dfrac{1}{2}\rho {\left( 0 \right)^2}\]
\[ \Rightarrow \dfrac{1}{2}\rho {v_P}^2 = \rho gh\]
Now ${P_Q} - {P_{atm}} = \rho gh = 5 \times {10^5}N/{m^2}$ given in question
Put $\rho gh = 5 \times {10^5}$ and density of water $\rho = 1000kg/{m^3}$
\[ \Rightarrow \dfrac{1}{2} \times 1000 \times {v_P}^2 = 5 \times {10^5}\]
\[ \Rightarrow {v_P}^2 = \dfrac{{5 \times {{10}^5} \times 2}}{{1000}}\]
Further solving
\[ \Rightarrow {v_P} = \sqrt {\dfrac{{5 \times {{10}^5} \times 2}}{{1000}}} \]
\[ \Rightarrow {v_P} = \sqrt {1000} \]
\[ \Rightarrow {v_P} = 31.62m/\sec \]
Hence the velocity to exit the water tank at point P is approximately $32m/\sec $
therefore Option B is correct
Note:
We can solve this question by another short method which is given below
We know gauge pressure $P = \rho gh$ from this we can find height of hole from free surface
$
\Rightarrow 5 \times {10^5} = 1000 \times 10 \times h \\
\Rightarrow h = 50m \\
$
And now apply Torricelli’s theorem formula velocity of Efflux $v = \sqrt {2gh} $
$
\Rightarrow v = \sqrt {2 \times 10 \times 50} \\
\Rightarrow v = \sqrt {1000} \\
\therefore v = 31.62m/\sec \\
$
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

