A job can be completed by 12 men in 12 days. How many extra days will be needed to complete the job, if 6 men leave after working for 6 days?
$\left( a \right)$ 10 days
$\left( b \right)$ 12 days
$\left( c \right)$ 6 days
$\left( d \right)$ 24 days
Answer
Verified
477.9k+ views
Hint: In this particular question use the concept that if 12 men can do a work in 12 days so the 1 day work of 12 men is $\dfrac{1}{{12}}$, therefore one day work of 1 man is $\dfrac{1}{{12 \times 12}}$,so the 6 day work of 12 men is $\dfrac{{6 \times 12}}{{12 \times 12}} = \dfrac{1}{2}$, so use these concept to reach the solution of the question.
Complete step-by-step answer:
Given data:
A job can be completed by 12 men in 12 days.
Now we have to find out how many extra days will be needed to complete the job, if 6 men leave after working for 6 days.
Let the work = 1
Now as the work is completed in 12 days by 12 men.
So the 1 day work of 12 men = $\dfrac{1}{{12}}$.
So the 1 day work of 1 man = $\dfrac{1}{{12 \times 12}}$
So the 6 day work of 1 man = $\dfrac{6}{{12 \times 12}}$.
So the 6 day work of 12 men = $\dfrac{{6 \times 12}}{{12 \times 12}} = \dfrac{1}{2}$.
So the remaining work after 6 days work of 6 men = total work – 6 day work of 12 men.
Therefore, the remaining work after 6 days work of 6 men = 1 – $\dfrac{1}{2}$ = $\dfrac{1}{2}$
So $\dfrac{1}{2}$ work is remaining.
Now after 6 days 6 workers go on leave, so the remaining work is done by the remaining 6 workers.
Let the number of days taken by remaining 6 workers be X.
So, the 12 men can complete 1 work in 12 days which is equal to 6 men can complete $\dfrac{1}{2}$work in X days.
Therefore, $\dfrac{1}{{12 \times 12}} = \dfrac{{\dfrac{1}{2}}}{{6 \times x}}$
Now simplify it we have,
$ \Rightarrow 6x = \dfrac{1}{2}\left( {144} \right)$
$ \Rightarrow x = \dfrac{{72}}{6} = 12$ days.
So the total number of days to finish the work this time = 12 + 6 = 18 days
So the number of extra days which is needed to complete the work = 18 – 12 = 6 days.
Hence option (c) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall that 12 men can complete 1 work in 12 days which is equal to the 6 men can complete $\dfrac{1}{2}$work in X days, so just covert this information into equation as above and simplify we will get the number of days in which the remaining work is finished, so the total work is finished is the sum of the previous days in which all 12 workers working and the number of days in which 6 workers are working so the extra number of days is the difference of current scenario days in which total work is finished into two parts and the number of days in which total work is finished in only one part.
Complete step-by-step answer:
Given data:
A job can be completed by 12 men in 12 days.
Now we have to find out how many extra days will be needed to complete the job, if 6 men leave after working for 6 days.
Let the work = 1
Now as the work is completed in 12 days by 12 men.
So the 1 day work of 12 men = $\dfrac{1}{{12}}$.
So the 1 day work of 1 man = $\dfrac{1}{{12 \times 12}}$
So the 6 day work of 1 man = $\dfrac{6}{{12 \times 12}}$.
So the 6 day work of 12 men = $\dfrac{{6 \times 12}}{{12 \times 12}} = \dfrac{1}{2}$.
So the remaining work after 6 days work of 6 men = total work – 6 day work of 12 men.
Therefore, the remaining work after 6 days work of 6 men = 1 – $\dfrac{1}{2}$ = $\dfrac{1}{2}$
So $\dfrac{1}{2}$ work is remaining.
Now after 6 days 6 workers go on leave, so the remaining work is done by the remaining 6 workers.
Let the number of days taken by remaining 6 workers be X.
So, the 12 men can complete 1 work in 12 days which is equal to 6 men can complete $\dfrac{1}{2}$work in X days.
Therefore, $\dfrac{1}{{12 \times 12}} = \dfrac{{\dfrac{1}{2}}}{{6 \times x}}$
Now simplify it we have,
$ \Rightarrow 6x = \dfrac{1}{2}\left( {144} \right)$
$ \Rightarrow x = \dfrac{{72}}{6} = 12$ days.
So the total number of days to finish the work this time = 12 + 6 = 18 days
So the number of extra days which is needed to complete the work = 18 – 12 = 6 days.
Hence option (c) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall that 12 men can complete 1 work in 12 days which is equal to the 6 men can complete $\dfrac{1}{2}$work in X days, so just covert this information into equation as above and simplify we will get the number of days in which the remaining work is finished, so the total work is finished is the sum of the previous days in which all 12 workers working and the number of days in which 6 workers are working so the extra number of days is the difference of current scenario days in which total work is finished into two parts and the number of days in which total work is finished in only one part.
Recently Updated Pages
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Class 11 Question and Answer - Your Ultimate Solutions Guide
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE