Answer

Verified

384.3k+ views

**Hint:**Use the formula for the relative velocity of an object with respect to the other object. Rewrite this formula for the relative velocity of the combustion products of the jet airplane with respect to the speed of the jet airplane. Substitute the values of all the speeds with the correct sign in this formula and calculate the speed of the combustion products with respect to the ground.

**Formula used:**

The formula for relative speed of an object with respect to the other object is given by

\[{v_{BA}} = {v_B} - {v_A}\] …… (1)

Here, \[{v_{BA}}\] is the relative speed of object B with respect to object A, \[{v_B}\] is speed of the object B with respect to ground and \[{v_A}\] is the speed of the object A with respect to the ground.

**Complete step by step answer:**

We have given that the speed of the jet airplane with respect to the ground is \[500\,{\text{km}} \cdot {{\text{h}}^{ - 1}}\].

\[{v_J} = 500\,{\text{km}} \cdot {{\text{h}}^{ - 1}}\]

We have also given that the relative speed of the combustion products of the jet airplane with respect to the jet airplane is \[1500\,{\text{km}} \cdot {{\text{h}}^{ - 1}}\].

\[{v_{CJ}} = 1500\,{\text{km}} \cdot {{\text{h}}^{ - 1}}\]

We are asked to calculate the speed of the combustion products of the jet airplane with respect to the ground.

Let \[{v_C}\] be the speed of the combustion products of the jet airplane with respect to the ground.We can calculate the speed of the combustion products of the jet airplane with respect to the ground using formula in equation (1). Rewrite equation (1) for the relative speed of the combustion products of the jet airplane with respect to the jet airplane.

\[{v_{CJ}} = {v_C} - {v_J}\]

Rearrange the above equation for \[{v_C}\].

\[{v_C} = {v_{CJ}} + {v_J}\]

Substitute \[ - 1500\,{\text{km}} \cdot {{\text{h}}^{ - 1}}\] for \[{v_{CJ}}\] and \[500\,{\text{km}} \cdot {{\text{h}}^{ - 1}}\] for \[{v_J}\] in the above equation.

\[{v_C} = \left( { - 1500\,{\text{km}} \cdot {{\text{h}}^{ - 1}}} \right) + \left( {500\,{\text{km}} \cdot {{\text{h}}^{ - 1}}} \right)\]

\[ \therefore {v_C} = - 1000\,{\text{km}} \cdot {{\text{h}}^{ - 1}}\]

The negative sign indicates that the combustion products are moving opposite to that of the airplane.Therefore, the speed of the combustion products with respect to the ground is \[1000\,{\text{km}} \cdot {{\text{h}}^{ - 1}}\].

**Hence, the correct option is B.**

**Note:**The students should not forget to use the value of relative speed of the combustion products of the jet airplane with respect to the jet airplane with negative sign because the combustion products thrown out of the jet airplane are moving in a direction opposite to that of the jet airplane.

Recently Updated Pages

Draw a labelled diagram of DC motor class 10 physics CBSE

A rod flies with constant velocity past a mark which class 10 physics CBSE

Why are spaceships provided with heat shields class 10 physics CBSE

What is reflection Write the laws of reflection class 10 physics CBSE

What is the magnetic energy density in terms of standard class 10 physics CBSE

Write any two differences between a binocular and a class 10 physics CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Name 10 Living and Non living things class 9 biology CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Write the 6 fundamental rights of India and explain in detail