
A invested Rs. 25,300 for 7 months, B invested Rs. 25,200 for 11 months and C invested Rs. 27,500 for 7 months. Find the share of A and C together out of a total profit of Rs. 33,600.
Answer
595.8k+ views
Hint – Total investment of each person is respective months multiplied by respective investment. Share of profit earned by A and C is corresponding to their investment .(Use properties of ratio).
Given data
A invested Rs. 25,300 for 7 months.
Therefore total investment of A $ = \left( {25300 \times 7} \right)$
B invested Rs. 25,200 for 11 months.
Therefore total investment of B $ = \left( {25200 \times 11} \right)$
C invested Rs. 27,500 for 7 months.
Therefore total investment of C $ = \left( {27500 \times 7} \right)$
Therefore ratio of their investment are
$A:B:C = \left( {25300 \times 7} \right):\left( {25200 \times 11} \right):\left( {27500 \times 7} \right)$
Divide by 1100 we get
$\begin{gathered}
A:B:C = \left( {23 \times 7} \right):\left( {252} \right):\left( {25 \times 7} \right) \\
A:B:C = 161:252:175 \\
\end{gathered} $
Now it is given that the total profit is Rs. 33,600.
Let the share of A, B and C is x, y and z respectively.
So, the share of x is
$\begin{gathered}
\Rightarrow x = \dfrac{{161}}{{161 + 252 + 175}} \times 33600 \\
\Rightarrow x = \dfrac{{161}}{{588}} \times 33600 \\
\end{gathered} $
So, the share of y is
$\begin{gathered}
\Rightarrow y = \dfrac{{252}}{{161 + 252 + 175}} \times 33600 \\
\Rightarrow y = \dfrac{{252}}{{588}} \times 33600 \\
\end{gathered} $
So, the share of z is
$\begin{gathered}
\Rightarrow z = \dfrac{{175}}{{161 + 252 + 175}} \times 33600 \\
\Rightarrow z = \dfrac{{175}}{{588}} \times 33600 \\
\end{gathered} $
So the share of A and C together is
$\begin{gathered}
x + z = \dfrac{{161}}{{588}} \times 33600 + \dfrac{{175}}{{588}} \times 33600 \\
\Rightarrow x + z = \dfrac{{336}}{{588}} \times 33600 = 19200 \\
\end{gathered} $
So, the share of A and C together out of a total profit of Rs. 33,600 is Rs. 19,200.
Note – In such types of questions first calculate the total investment of the respective persons then calculate the ratio of their investments and simplify, from this we get the percentage amount they invested, which then can be multiplied with the total profit earned to get the share of profit earned by the respective person .
Given data
A invested Rs. 25,300 for 7 months.
Therefore total investment of A $ = \left( {25300 \times 7} \right)$
B invested Rs. 25,200 for 11 months.
Therefore total investment of B $ = \left( {25200 \times 11} \right)$
C invested Rs. 27,500 for 7 months.
Therefore total investment of C $ = \left( {27500 \times 7} \right)$
Therefore ratio of their investment are
$A:B:C = \left( {25300 \times 7} \right):\left( {25200 \times 11} \right):\left( {27500 \times 7} \right)$
Divide by 1100 we get
$\begin{gathered}
A:B:C = \left( {23 \times 7} \right):\left( {252} \right):\left( {25 \times 7} \right) \\
A:B:C = 161:252:175 \\
\end{gathered} $
Now it is given that the total profit is Rs. 33,600.
Let the share of A, B and C is x, y and z respectively.
So, the share of x is
$\begin{gathered}
\Rightarrow x = \dfrac{{161}}{{161 + 252 + 175}} \times 33600 \\
\Rightarrow x = \dfrac{{161}}{{588}} \times 33600 \\
\end{gathered} $
So, the share of y is
$\begin{gathered}
\Rightarrow y = \dfrac{{252}}{{161 + 252 + 175}} \times 33600 \\
\Rightarrow y = \dfrac{{252}}{{588}} \times 33600 \\
\end{gathered} $
So, the share of z is
$\begin{gathered}
\Rightarrow z = \dfrac{{175}}{{161 + 252 + 175}} \times 33600 \\
\Rightarrow z = \dfrac{{175}}{{588}} \times 33600 \\
\end{gathered} $
So the share of A and C together is
$\begin{gathered}
x + z = \dfrac{{161}}{{588}} \times 33600 + \dfrac{{175}}{{588}} \times 33600 \\
\Rightarrow x + z = \dfrac{{336}}{{588}} \times 33600 = 19200 \\
\end{gathered} $
So, the share of A and C together out of a total profit of Rs. 33,600 is Rs. 19,200.
Note – In such types of questions first calculate the total investment of the respective persons then calculate the ratio of their investments and simplify, from this we get the percentage amount they invested, which then can be multiplied with the total profit earned to get the share of profit earned by the respective person .
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Tropical deciduous trees shed their leaves in the dry class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write an application to the principal requesting five class 10 english CBSE

