
A homogeneous rod of length L is acted upon by the two forces \[{{F}_{1}}\] and \[{{F}_{2}}\] applied to its ends and directed opposite to each other. With what force F will the rod be stretched at the cross section at a distance l from the end where force \[{{F}_{1}}\] is applied?
(A) \[\dfrac{{{F}_{2}}-{{F}_{1}}}{2L}\]
(B) \[\dfrac{({{F}_{2}}-{{F}_{1}})l}{L}\]
(C) \[\dfrac{({{F}_{2}}-{{F}_{1}})l}{L}+{{F}_{1}}\]
(D) \[\dfrac{({{F}_{2}}-{{F}_{1}})l}{L}+{{F}_{2}}\]

Answer
496.5k+ views
Hint: We are given in the question that the rod is homogeneous which means mass is uniformly throughout and two forces act. We are not given which force is greater in magnitude. We need to find the magnitude
Complete step by step answer:
Let m be mass per unit length and since it is not given which force is greater in magnitude, assuming \[{{F}_{2}}<{{F}_{1}}\]
So, the system will move towards the left. Let a be the acceleration of the system
For AP:
Length=l
Mass of this length is ml
Applying Newton’s second law \[(ml)a={{F}_{1}}-F\]-------(1)
For PB:
\[\Rightarrow m(L-1)a=F-{{F}_{2}}\]-----(2)
Divide eq (2) by (1) we get, \[\dfrac{F-{{F}_{2}}}{{{F}_{1}}-F}=\dfrac{L-1}{l}\]
Cross multiplying, we get,
\[\begin{align}
&\Rightarrow (\dfrac{L}{l}-1){{F}_{1}}-(\dfrac{L}{l}-1)F=F-{{F}_{2}} \\
&\Rightarrow F=(1-\dfrac{l}{L}){{F}_{1}}+{{F}_{2}}(\dfrac{l}{L}) \\
&\therefore F=\dfrac{({{F}_{2}}-{{F}_{1}})l}{L}+{{F}_{1}} \\
\end{align}\]
Thus, the correct option is (C).
Additional Information:
when more than one force acts on any system then we have to add all the forces vectorially using either triangle law of vector addition or parallelogram law of vector addition.
Note: Here we have assumed that one force is greater than another to find the net force and then has applied Newton’s second law. The forces were opposite in direction so resultant force was towards the left. We are not given with any numerical values, we have to arrive at the solution algebraically.
Complete step by step answer:
Let m be mass per unit length and since it is not given which force is greater in magnitude, assuming \[{{F}_{2}}<{{F}_{1}}\]
So, the system will move towards the left. Let a be the acceleration of the system
For AP:
Length=l
Mass of this length is ml
Applying Newton’s second law \[(ml)a={{F}_{1}}-F\]-------(1)
For PB:
\[\Rightarrow m(L-1)a=F-{{F}_{2}}\]-----(2)
Divide eq (2) by (1) we get, \[\dfrac{F-{{F}_{2}}}{{{F}_{1}}-F}=\dfrac{L-1}{l}\]
Cross multiplying, we get,
\[\begin{align}
&\Rightarrow (\dfrac{L}{l}-1){{F}_{1}}-(\dfrac{L}{l}-1)F=F-{{F}_{2}} \\
&\Rightarrow F=(1-\dfrac{l}{L}){{F}_{1}}+{{F}_{2}}(\dfrac{l}{L}) \\
&\therefore F=\dfrac{({{F}_{2}}-{{F}_{1}})l}{L}+{{F}_{1}} \\
\end{align}\]
Thus, the correct option is (C).
Additional Information:
when more than one force acts on any system then we have to add all the forces vectorially using either triangle law of vector addition or parallelogram law of vector addition.
Note: Here we have assumed that one force is greater than another to find the net force and then has applied Newton’s second law. The forces were opposite in direction so resultant force was towards the left. We are not given with any numerical values, we have to arrive at the solution algebraically.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
What is the difference between superposition and e class 11 physics CBSE

State the laws of reflection of light

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

How much is 23 kg in pounds class 11 chemistry CBSE

How do I get the molar mass of urea class 11 chemistry CBSE

Convert the following into basic units a 287pm b 1515pm class 11 chemistry CBSE
