Answer
Verified
446.7k+ views
Hint: We will proceed in this problem by making a venn diagram of the problem.
Let consider three sets i.e., $C$, $I$ and $T$ which represents the workers purchasing coffee, ice-cream and tea respectively.
Complete step-by-step answer:
\[{\text{Total number of workers}} = 123\]
Number of workers purchasing ice-cream, $n\left( I \right) = 42$
Number of workers purchasing tea, $n\left( T \right) = 36$
Number of workers purchasing coffee, $n\left( C \right) = 30$
Number of workers purchasing ice-cream and tea, $n\left( {I \cap T} \right) = 15$
Number of workers purchasing ice-cream and coffee, $n\left( {I \cap C} \right) = 10$
Number of workers purchasing only ice-cream and tea but not coffee (shown in the figure through blue coloured hatched lines) is given by
$n\left( {I \cap T} \right) - n\left( {I \cap T \cap C} \right) = 11 \Rightarrow 15 - n\left( {I \cap T \cap C} \right) = 11 \Rightarrow n\left( {I \cap T \cap C} \right) = 15 - 11 = 4$
Number of workers purchasing only coffee and tea but not ice-cream (shown in the figure through green coloured hatched lines) is given by
$n\left( {T \cap C} \right) - n\left( {I \cap T \cap C} \right) = 4 \Rightarrow n\left( {T \cap C} \right) - 4 = 4 \Rightarrow n\left( {T \cap C} \right) = 8$
As we know that for any three sets i.e., $C$, $I$ and $T$, we can write
$n\left( {I \cup T \cup C} \right) = n\left( I \right) + n\left( T \right) + n\left( C \right) - n\left( {I \cap T} \right) - n\left( {T \cap C} \right) - n\left( {I \cap C} \right) + n\left( {I \cap T \cap C} \right){\text{ }} \to {\text{(1)}}$
Now substituting all the values in equation (1), we get
Number of workers purchasing either ice-cream or tea or coffee is given by
$n\left( {I \cup T \cup C} \right) = 42 + 36 + 30 - 15 - 8 - 10 + 4 = 79$
Since, Number of workers who did not purchase anything is equal to the total number of workers minus the number of workers purchasing either ice-cream or tea or coffee.
\[{\text{Number of workers who did not purchase anything}} = 123 - 79 = 44\].
Note: In these types of problems, a venn diagram is used to calculate all the unknowns. In this particular problem, we used the given data to determine the unknowns in equation (1).
Let consider three sets i.e., $C$, $I$ and $T$ which represents the workers purchasing coffee, ice-cream and tea respectively.
Complete step-by-step answer:
\[{\text{Total number of workers}} = 123\]
Number of workers purchasing ice-cream, $n\left( I \right) = 42$
Number of workers purchasing tea, $n\left( T \right) = 36$
Number of workers purchasing coffee, $n\left( C \right) = 30$
Number of workers purchasing ice-cream and tea, $n\left( {I \cap T} \right) = 15$
Number of workers purchasing ice-cream and coffee, $n\left( {I \cap C} \right) = 10$
Number of workers purchasing only ice-cream and tea but not coffee (shown in the figure through blue coloured hatched lines) is given by
$n\left( {I \cap T} \right) - n\left( {I \cap T \cap C} \right) = 11 \Rightarrow 15 - n\left( {I \cap T \cap C} \right) = 11 \Rightarrow n\left( {I \cap T \cap C} \right) = 15 - 11 = 4$
Number of workers purchasing only coffee and tea but not ice-cream (shown in the figure through green coloured hatched lines) is given by
$n\left( {T \cap C} \right) - n\left( {I \cap T \cap C} \right) = 4 \Rightarrow n\left( {T \cap C} \right) - 4 = 4 \Rightarrow n\left( {T \cap C} \right) = 8$
As we know that for any three sets i.e., $C$, $I$ and $T$, we can write
$n\left( {I \cup T \cup C} \right) = n\left( I \right) + n\left( T \right) + n\left( C \right) - n\left( {I \cap T} \right) - n\left( {T \cap C} \right) - n\left( {I \cap C} \right) + n\left( {I \cap T \cap C} \right){\text{ }} \to {\text{(1)}}$
Now substituting all the values in equation (1), we get
Number of workers purchasing either ice-cream or tea or coffee is given by
$n\left( {I \cup T \cup C} \right) = 42 + 36 + 30 - 15 - 8 - 10 + 4 = 79$
Since, Number of workers who did not purchase anything is equal to the total number of workers minus the number of workers purchasing either ice-cream or tea or coffee.
\[{\text{Number of workers who did not purchase anything}} = 123 - 79 = 44\].
Note: In these types of problems, a venn diagram is used to calculate all the unknowns. In this particular problem, we used the given data to determine the unknowns in equation (1).
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell