
A garden is 90 m long and 75 m broad. A path 5 m wide is to be built outside and around it. Find the area of the path. Also find the area of the garden in hectares.
Answer
612.9k+ views
Hint: Here, we will find the area of the path by subtracting the inner area from the outer area of the garden.
Here the garden is in the shape of a rectangle.
Given,
Inner length of the garden (AB) $l = 90$ m
Inner width of the garden (BC) $b = 75$ m
As we know that ${\text{Area of a rectangle}} = \left( {{\text{Length of the rectangle}}} \right) \times \left( {{\text{Width of the rectangle}}} \right)$
So, ${\text{Area of inner rectangle ABCD}} = l \times b = 90 \times 75 = 6750$ m2
According to the problem, a path of 5 m wide is to be built around this garden as shown in figure
Here, Outer length of the garden (PQ) $L = l + 5 + 5 = 90 + 5 + 5 = 100$ m
Outer width of the garden (QR) \[B = b + 5 + 5 = 75 + 5 + 5 = 85\] m
So, ${\text{Area of the outer rectangle PQRS}} = L \times B = 100 \times 85 = 8500$ m2
$
{\text{Area of the path}} = {\text{Area of rectangle PQRS}} - {\text{Area of rectangle ABCD}} \\
\Rightarrow {\text{Area of the path}} = 8500 - 6750 = 1750\,{{\text{m}}^2} \\
$
Therefore, the area of the path is 1750 m2.
Since, we know that $1{\text{ hectare}} = 10000{\text{ }}{{\text{m}}^2}$
Also, ${\text{Area of the garden}} = {\text{Area of inner rectangular ABCD}} = 6750{\text{ }}{{\text{m}}^2} = \dfrac{{6750}}{{10000}} = 0.675{\text{ hectare}}$.
Therefore, the area of the garden in hectare is 0.675 hectare.
Note: In the above problem, when a path of 5 m wide is built, the outer dimensions are increased by 10 m in both x and y direction which is clearly visible from the figure.
Here the garden is in the shape of a rectangle.
Given,
Inner length of the garden (AB) $l = 90$ m
Inner width of the garden (BC) $b = 75$ m
As we know that ${\text{Area of a rectangle}} = \left( {{\text{Length of the rectangle}}} \right) \times \left( {{\text{Width of the rectangle}}} \right)$
So, ${\text{Area of inner rectangle ABCD}} = l \times b = 90 \times 75 = 6750$ m2
According to the problem, a path of 5 m wide is to be built around this garden as shown in figure
Here, Outer length of the garden (PQ) $L = l + 5 + 5 = 90 + 5 + 5 = 100$ m
Outer width of the garden (QR) \[B = b + 5 + 5 = 75 + 5 + 5 = 85\] m
So, ${\text{Area of the outer rectangle PQRS}} = L \times B = 100 \times 85 = 8500$ m2
$
{\text{Area of the path}} = {\text{Area of rectangle PQRS}} - {\text{Area of rectangle ABCD}} \\
\Rightarrow {\text{Area of the path}} = 8500 - 6750 = 1750\,{{\text{m}}^2} \\
$
Therefore, the area of the path is 1750 m2.
Since, we know that $1{\text{ hectare}} = 10000{\text{ }}{{\text{m}}^2}$
Also, ${\text{Area of the garden}} = {\text{Area of inner rectangular ABCD}} = 6750{\text{ }}{{\text{m}}^2} = \dfrac{{6750}}{{10000}} = 0.675{\text{ hectare}}$.
Therefore, the area of the garden in hectare is 0.675 hectare.
Note: In the above problem, when a path of 5 m wide is built, the outer dimensions are increased by 10 m in both x and y direction which is clearly visible from the figure.
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is the Full Form of ISI and RAW

Golden Revolution is related to AFood production BOil class 9 social science CBSE

