A function $f$ is defined by$f\left( x \right) = 2x - 5$ . Write down the values of
$
\left( i \right)f\left( 0 \right) \\
\left( {ii} \right)f\left( 7 \right) \\
\left( {iii} \right)f\left( { - 3} \right) \\
$
Answer
364.5k+ views
Hint: In this question we simply use putting the values and getting the results.
Now given that,
$f\left( x \right) = 2x - 5$
Now putting the different values of $x$ in $f\left( x \right)$
$
\left( i \right){\text{ }}f\left( 0 \right) = 2 \times 0 - 5 \\
= 0 - 5 \\
= - 5 \\
\\
\left( {ii} \right){\text{ }}f\left( 7 \right) = 2 \times 7 - 5 \\
= 14 - 5 \\
= 9 \\
\\
\left( {iii} \right){\text{ }}f\left( { - 3} \right) = \left( {2 \times - 3} \right) - 5 \\
= - 6 - 5 \\
= - 11 \\
$
Note: These types of questions can be solved by simply putting the different values of $x$ in the given function and thus we will get the different values of $f\left( x \right)$ for different values of $x$ .
Now given that,
$f\left( x \right) = 2x - 5$
Now putting the different values of $x$ in $f\left( x \right)$
$
\left( i \right){\text{ }}f\left( 0 \right) = 2 \times 0 - 5 \\
= 0 - 5 \\
= - 5 \\
\\
\left( {ii} \right){\text{ }}f\left( 7 \right) = 2 \times 7 - 5 \\
= 14 - 5 \\
= 9 \\
\\
\left( {iii} \right){\text{ }}f\left( { - 3} \right) = \left( {2 \times - 3} \right) - 5 \\
= - 6 - 5 \\
= - 11 \\
$
Note: These types of questions can be solved by simply putting the different values of $x$ in the given function and thus we will get the different values of $f\left( x \right)$ for different values of $x$ .
Last updated date: 18th Sep 2023
•
Total views: 364.5k
•
Views today: 10.64k