Answer
Verified
494.7k+ views
Hint: Approach the solution by considering a fraction and proceed with further simplification by applying the given conditions.
Let us consider the fraction as $\dfrac{x}{y}$
By applying the ${1^{st}}$ condition we will get
$ \Rightarrow \dfrac{{x + 1}}{{y + 1}} = \dfrac{4}{5}$
On further simplification we will get
$\
\Rightarrow 5\left( {x + 1} \right) = 4\left( {y + 1} \right) \\
\Rightarrow 5x + 5 = 4y + 4 \\
\ $
$ \Rightarrow 5x - 4y = - 1$$ \to (1)$
And now by applying ${2^{nd}}$condition we will get
$\
\Rightarrow \dfrac{{x - 5}}{{y - 5}} = \dfrac{1}{2} \\
\\
\ $
On further simplification we will get
$\
\Rightarrow 2(x - 5) = 1(y - 5) \\
\Rightarrow 2x - 10 = y - 5 \\
\Rightarrow 2x - y = - 5 + 10 \\
\ $
$2x - y = 5 \to (2)$
For further calculation multiply equation $(2) \times 4$
$\
\Rightarrow 4 \times (2x - y = 5) \\
\Rightarrow 8x - 4y = 20 \to (3) \\
\ $
Now subtract equation $(3)$ from equation $(1)$ we get
$x = 7$
Putting $x = 7$ in equation $(2)$ we get
$\
\Rightarrow 2x - y = 5 \\
\Rightarrow 2(7) - y = 5 \\
\Rightarrow y = 9 \\
\ $
Here we got both $x\& y$ values
Therefore required fraction is $\dfrac{x}{y} = \dfrac{7}{9}$
Note: Apply the conditions in a step-by-step process with the proper approach to get the answer as the given problem is full of simplification.
Let us consider the fraction as $\dfrac{x}{y}$
By applying the ${1^{st}}$ condition we will get
$ \Rightarrow \dfrac{{x + 1}}{{y + 1}} = \dfrac{4}{5}$
On further simplification we will get
$\
\Rightarrow 5\left( {x + 1} \right) = 4\left( {y + 1} \right) \\
\Rightarrow 5x + 5 = 4y + 4 \\
\ $
$ \Rightarrow 5x - 4y = - 1$$ \to (1)$
And now by applying ${2^{nd}}$condition we will get
$\
\Rightarrow \dfrac{{x - 5}}{{y - 5}} = \dfrac{1}{2} \\
\\
\ $
On further simplification we will get
$\
\Rightarrow 2(x - 5) = 1(y - 5) \\
\Rightarrow 2x - 10 = y - 5 \\
\Rightarrow 2x - y = - 5 + 10 \\
\ $
$2x - y = 5 \to (2)$
For further calculation multiply equation $(2) \times 4$
$\
\Rightarrow 4 \times (2x - y = 5) \\
\Rightarrow 8x - 4y = 20 \to (3) \\
\ $
Now subtract equation $(3)$ from equation $(1)$ we get
$x = 7$
Putting $x = 7$ in equation $(2)$ we get
$\
\Rightarrow 2x - y = 5 \\
\Rightarrow 2(7) - y = 5 \\
\Rightarrow y = 9 \\
\ $
Here we got both $x\& y$ values
Therefore required fraction is $\dfrac{x}{y} = \dfrac{7}{9}$
Note: Apply the conditions in a step-by-step process with the proper approach to get the answer as the given problem is full of simplification.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life