A force of 10 N is required to draw a rectangular glass plate on the surface of a liquid with some velocity. Force needed to draw another glass plate of 3 times length and 2 times width is:
A. \[\dfrac{5}{3}\,{\text{N}}\]
B. $10 N$
C. $60 N$
D. $30 N$
Answer
Verified
449.7k+ views
Hint: The resistance force acting on the glass plate is the viscous force due to the liquid. Recall the formula for the viscous force and determine its dependence on the area of the glass plate. Find out the area of the second plate and thus determine the viscous force acting on the second glass plate.
Formula used:
\[{F_v} = \eta A\dfrac{{dv}}{{dx}}\]
Here, \[\eta \] is the coefficient of viscosity, A is the area of the object and \[\dfrac{{dv}}{{dx}}\] is the velocity gradient.
Complete step by step answer:
When we draw out an object from the viscous liquid, the resistance provided by the liquid is known as viscous force. In this case, the viscous force acting on the glass plate is 10 N.We have the expression for the viscous force,
\[{F_v} = \eta A\dfrac{{dv}}{{dx}}\] ….. (1)
Here, \[\eta \] is the coefficient of viscosity, A is the area of the object and \[\dfrac{{dv}}{{dx}}\] is the velocity gradient.
Let the length of the glass plate is l and its width is w. Therefore, the area of the first glass plate is,
\[{A_1} = lw\]
Now, we have given that another plate has 3 times the length and 2 times the width of the first glass plate. Therefore, the area of the second plate is,
\[{A_2} = 3l \times 2w\]
\[ \Rightarrow {A_2} = 6lw\]
\[ \Rightarrow {A_2} = 6{A_1}\]
From equation (1), we can write,
\[{F_v} \propto A\]
Therefore, we can write,
\[\dfrac{{{F_2}}}{{{F_1}}} = \dfrac{{{A_2}}}{{{A_1}}}\]
\[ \Rightarrow \dfrac{{{F_2}}}{{{F_1}}} = \dfrac{{6{A_1}}}{{{A_1}}}\]
\[ \Rightarrow {F_2} = 6{F_1}\]
Substituting 10 N for \[{F_1}\] in the above equation, we get,
\[{F_2} = 6\left( {10} \right)\]
\[ \therefore {F_2} = 60\,{\text{N}}\]
So, the correct answer is option C.
Note:The velocity gradient is the relative velocity between the layers of the same liquid. Since the second glass place is drawn from the same liquid, the velocity gradient remains the same and therefore, we have taken the proportionality only between the viscous force and area of the glass plate. The given glass plate is rectangular; therefore, the area of the glass plate is the product of its length and width.
Formula used:
\[{F_v} = \eta A\dfrac{{dv}}{{dx}}\]
Here, \[\eta \] is the coefficient of viscosity, A is the area of the object and \[\dfrac{{dv}}{{dx}}\] is the velocity gradient.
Complete step by step answer:
When we draw out an object from the viscous liquid, the resistance provided by the liquid is known as viscous force. In this case, the viscous force acting on the glass plate is 10 N.We have the expression for the viscous force,
\[{F_v} = \eta A\dfrac{{dv}}{{dx}}\] ….. (1)
Here, \[\eta \] is the coefficient of viscosity, A is the area of the object and \[\dfrac{{dv}}{{dx}}\] is the velocity gradient.
Let the length of the glass plate is l and its width is w. Therefore, the area of the first glass plate is,
\[{A_1} = lw\]
Now, we have given that another plate has 3 times the length and 2 times the width of the first glass plate. Therefore, the area of the second plate is,
\[{A_2} = 3l \times 2w\]
\[ \Rightarrow {A_2} = 6lw\]
\[ \Rightarrow {A_2} = 6{A_1}\]
From equation (1), we can write,
\[{F_v} \propto A\]
Therefore, we can write,
\[\dfrac{{{F_2}}}{{{F_1}}} = \dfrac{{{A_2}}}{{{A_1}}}\]
\[ \Rightarrow \dfrac{{{F_2}}}{{{F_1}}} = \dfrac{{6{A_1}}}{{{A_1}}}\]
\[ \Rightarrow {F_2} = 6{F_1}\]
Substituting 10 N for \[{F_1}\] in the above equation, we get,
\[{F_2} = 6\left( {10} \right)\]
\[ \therefore {F_2} = 60\,{\text{N}}\]
So, the correct answer is option C.
Note:The velocity gradient is the relative velocity between the layers of the same liquid. Since the second glass place is drawn from the same liquid, the velocity gradient remains the same and therefore, we have taken the proportionality only between the viscous force and area of the glass plate. The given glass plate is rectangular; therefore, the area of the glass plate is the product of its length and width.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE
Lassaignes test for the detection of nitrogen will class 11 chemistry CBSE
The type of inflorescence in Tulsi a Cyanthium b Hypanthodium class 11 biology CBSE