Answer
Verified
373.5k+ views
Hint:Whenever a body is acted by some force it gets accelerated which in mathematical form it’s called Newton’s second law of motion as $F = ma$ here, we will find the net force acting on the body and its direction then will find the net acceleration of the body.
Complete step by step answer:
Let us find the net magnitude of forces ${F_1}$ and ${F_2}$ which are perpendicular to each other and this net force be written as ${F_{12}}$ so,
${F_{12}} = \sqrt {{F^2} + {F^2}} $
${F_{12}} = \sqrt 2 F$ Which will be in direction just opposite to that of ${F_3}$ .
Now, two forces acting on the body of mass m respectively ${F_{12}} = \sqrt 2 F$ and ${F_3} = F$.
Both forces are in opposite direction,
Hence net force act on the body of mass $m$ is,
${F_{net}} = \sqrt 2 F - F$
$\Rightarrow {F_{net}} = (\sqrt 2 - 1)F$
Now, let us assume that net acceleration is denoted by $a'$ then by newton’ second law we have:
$(\sqrt 2 - 1)F = ma'$
We also know that, $F = ma$ put this value in above equation, we get,
$(\sqrt 2 - 1)a = a'$
Net acceleration is $a' = (\sqrt 2 - 1)a$
Hence, the correct option is A.
Note:It should be remembered that, Force is a vector quantity and its added always using vector algebra which is given as ${F_{net}} = \sqrt {{F_1}^2 + {F_2}^2 + 2{F_1}{F_2}\cos \theta } $ and the direction of two equal vectors resultant is in the middle of the angle between them. And it can also be calculated with the general formula $\tan \beta = \dfrac{{{F_2}\sin \theta }}{{{F_1} + {F_2}\cos \theta }}$.
Complete step by step answer:
Let us find the net magnitude of forces ${F_1}$ and ${F_2}$ which are perpendicular to each other and this net force be written as ${F_{12}}$ so,
${F_{12}} = \sqrt {{F^2} + {F^2}} $
${F_{12}} = \sqrt 2 F$ Which will be in direction just opposite to that of ${F_3}$ .
Now, two forces acting on the body of mass m respectively ${F_{12}} = \sqrt 2 F$ and ${F_3} = F$.
Both forces are in opposite direction,
Hence net force act on the body of mass $m$ is,
${F_{net}} = \sqrt 2 F - F$
$\Rightarrow {F_{net}} = (\sqrt 2 - 1)F$
Now, let us assume that net acceleration is denoted by $a'$ then by newton’ second law we have:
$(\sqrt 2 - 1)F = ma'$
We also know that, $F = ma$ put this value in above equation, we get,
$(\sqrt 2 - 1)a = a'$
Net acceleration is $a' = (\sqrt 2 - 1)a$
Hence, the correct option is A.
Note:It should be remembered that, Force is a vector quantity and its added always using vector algebra which is given as ${F_{net}} = \sqrt {{F_1}^2 + {F_2}^2 + 2{F_1}{F_2}\cos \theta } $ and the direction of two equal vectors resultant is in the middle of the angle between them. And it can also be calculated with the general formula $\tan \beta = \dfrac{{{F_2}\sin \theta }}{{{F_1} + {F_2}\cos \theta }}$.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE