Answer
Verified
495.6k+ views
Hint: - The number of possibilities in each of these cases is $3!$ as the digits at one's and ten's places are fixed and the rest $3$ digits can be chosen in $3!$ ways. Because we know that rearranging the n numbers on n places is $n!$.
We know that the number is divisible by $4$ only when it ends with: when the last two digits are divisible by $4$.
So by the given numbers we can form number which is divisible by $4$ only when it ends with:
\[12,\;,\;24,,\;32,\;\;52\]
The number of possibilities in each of these cases is $3!$ as the digits at one's and ten's places are fixed and the rest $3$ digits can be chosen in $3!$ ways. Because we know that rearranging of n numbers on n places is $n!$.
Thus total possibilities for digit to be divisible by \[4 = 4 \times 3!\] (because we made four conditions above for divisibility by 4).
The total number we can form by these five numbers are: - $5!$ , (arranging 5 numbers in 5 places).
Let $E = {\text{the number is divisible by}}\;4$
$P(E) = \frac{{{\text{Numbers divisible by}}4}}{{{\text{Total numbers}}}}$
$ = \frac{{4 \times 3!}}{{5!}} = \frac{{4 \times 3 \times 2 \times 1}}{{5 \times 4 \times 3 \times 2 \times 1}} = \frac{1}{5}$
Hence, option A is the correct answer.
Note: - Whenever we face such a type of question first find out the favorable outcome. Here we can find out the number which is divisible by four by the divisibility rule by fixing the last two numbers which are divisible by four and rearrange the first three numbers to find a favorable outcome.
We know that the number is divisible by $4$ only when it ends with: when the last two digits are divisible by $4$.
So by the given numbers we can form number which is divisible by $4$ only when it ends with:
\[12,\;,\;24,,\;32,\;\;52\]
The number of possibilities in each of these cases is $3!$ as the digits at one's and ten's places are fixed and the rest $3$ digits can be chosen in $3!$ ways. Because we know that rearranging of n numbers on n places is $n!$.
Thus total possibilities for digit to be divisible by \[4 = 4 \times 3!\] (because we made four conditions above for divisibility by 4).
The total number we can form by these five numbers are: - $5!$ , (arranging 5 numbers in 5 places).
Let $E = {\text{the number is divisible by}}\;4$
$P(E) = \frac{{{\text{Numbers divisible by}}4}}{{{\text{Total numbers}}}}$
$ = \frac{{4 \times 3!}}{{5!}} = \frac{{4 \times 3 \times 2 \times 1}}{{5 \times 4 \times 3 \times 2 \times 1}} = \frac{1}{5}$
Hence, option A is the correct answer.
Note: - Whenever we face such a type of question first find out the favorable outcome. Here we can find out the number which is divisible by four by the divisibility rule by fixing the last two numbers which are divisible by four and rearrange the first three numbers to find a favorable outcome.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it