A first-order reaction has a specific reaction rate of $\text{1}{{\text{0}}^{-3}}\text{ }{{\text{s}}^{1-}}$. How much time will it take for 10gm of this to reduce to 2.5 gm?
Answer
335.1k+ views
Hint: The first-order reaction depends only on one reactant whereas Zero order reaction does not depend on any reacting species. The formula of the first-order reaction is $\text{k = }\dfrac{2.303}{\text{t}}\log \dfrac{{{\text{A}}_{\text{O}}}}{\text{A}}$.
Complete answer:
-To find the time that will reduce the concentration from 10 g to 2.5 g it is given that specific reaction rate or k = ${{10}^{-3}}$, initial concentration is $({{\text{A}}_{\text{O}}}\text{) = 10g}$ and the final concentration is $(\text{A) = 2}\text{.5g}$.
-So, we can apply the formula of the first order that is:
$\text{k = }\dfrac{2.303}{\text{t}}\log \dfrac{{{\text{A}}_{\text{O}}}}{\text{A}}$
-It can also be written as:
$\text{t = }\dfrac{2.303}{\text{k}}\log \dfrac{{{\text{A}}_{\text{O}}}}{\text{A}}$
$\text{t = }\dfrac{2.303}{{{10}^{-3}}}\log \dfrac{10}{2.5}$
$\text{t = 2030 }\cdot \text{ log4}$
-Now, the value of log4 from the log table is 0.6021, so by applying it in the above equation, we will get:
$\text{t = 2303 }\cdot \text{ 0}\text{.6021}$
$\text{t = 1386}\text{.6 sec}$
-Therefore, a total of 1386.6 sec time will be taken by the reactant to reduce up to 2.5g.
Additional Information:
-The physical significance of k is: It represents the fraction of the reactant decomposed per unit time of the constant concentration.
-The common formula of rate equation for all the orders except for n=1 will be: ${{\text{k}}_{\text{n}}}\text{ = }\dfrac{1}{t\left( n-1 \right)}\left( \dfrac{1}{{{\left( a-x \right)}^{n-1}}}-\dfrac{1}{{{a}^{n-1}}} \right)$
-Zero-order reactions occur under special conditions and are very uncommon.
They generally occur in the heterogeneous system.
Note: Students should not get confused between specific reaction rate and rate constant. The specific reaction rate is also a rate constant but it is a rate of reaction in which the specific conditions are applied.
Complete answer:
-To find the time that will reduce the concentration from 10 g to 2.5 g it is given that specific reaction rate or k = ${{10}^{-3}}$, initial concentration is $({{\text{A}}_{\text{O}}}\text{) = 10g}$ and the final concentration is $(\text{A) = 2}\text{.5g}$.
-So, we can apply the formula of the first order that is:
$\text{k = }\dfrac{2.303}{\text{t}}\log \dfrac{{{\text{A}}_{\text{O}}}}{\text{A}}$
-It can also be written as:
$\text{t = }\dfrac{2.303}{\text{k}}\log \dfrac{{{\text{A}}_{\text{O}}}}{\text{A}}$
$\text{t = }\dfrac{2.303}{{{10}^{-3}}}\log \dfrac{10}{2.5}$
$\text{t = 2030 }\cdot \text{ log4}$
-Now, the value of log4 from the log table is 0.6021, so by applying it in the above equation, we will get:
$\text{t = 2303 }\cdot \text{ 0}\text{.6021}$
$\text{t = 1386}\text{.6 sec}$
-Therefore, a total of 1386.6 sec time will be taken by the reactant to reduce up to 2.5g.
Additional Information:
-The physical significance of k is: It represents the fraction of the reactant decomposed per unit time of the constant concentration.
-The common formula of rate equation for all the orders except for n=1 will be: ${{\text{k}}_{\text{n}}}\text{ = }\dfrac{1}{t\left( n-1 \right)}\left( \dfrac{1}{{{\left( a-x \right)}^{n-1}}}-\dfrac{1}{{{a}^{n-1}}} \right)$
-Zero-order reactions occur under special conditions and are very uncommon.
They generally occur in the heterogeneous system.
Note: Students should not get confused between specific reaction rate and rate constant. The specific reaction rate is also a rate constant but it is a rate of reaction in which the specific conditions are applied.
Last updated date: 23rd Sep 2023
•
Total views: 335.1k
•
Views today: 6.35k
Recently Updated Pages
What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

What is the IUPAC name of CH3CH CH COOH A 2Butenoic class 11 chemistry CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

The dimensions of potential gradient are A MLT 3A 1 class 11 physics CBSE

Define electric potential and write down its dimen class 9 physics CBSE

Why is the electric field perpendicular to the equipotential class 12 physics CBSE
