
A first-order reaction has a specific reaction rate of $\text{1}{{\text{0}}^{-3}}\text{ }{{\text{s}}^{1-}}$. How much time will it take for 10gm of this to reduce to 2.5 gm?
Answer
568.5k+ views
Hint: The first-order reaction depends only on one reactant whereas Zero order reaction does not depend on any reacting species. The formula of the first-order reaction is $\text{k = }\dfrac{2.303}{\text{t}}\log \dfrac{{{\text{A}}_{\text{O}}}}{\text{A}}$.
Complete answer:
-To find the time that will reduce the concentration from 10 g to 2.5 g it is given that specific reaction rate or k = ${{10}^{-3}}$, initial concentration is $({{\text{A}}_{\text{O}}}\text{) = 10g}$ and the final concentration is $(\text{A) = 2}\text{.5g}$.
-So, we can apply the formula of the first order that is:
$\text{k = }\dfrac{2.303}{\text{t}}\log \dfrac{{{\text{A}}_{\text{O}}}}{\text{A}}$
-It can also be written as:
$\text{t = }\dfrac{2.303}{\text{k}}\log \dfrac{{{\text{A}}_{\text{O}}}}{\text{A}}$
$\text{t = }\dfrac{2.303}{{{10}^{-3}}}\log \dfrac{10}{2.5}$
$\text{t = 2030 }\cdot \text{ log4}$
-Now, the value of log4 from the log table is 0.6021, so by applying it in the above equation, we will get:
$\text{t = 2303 }\cdot \text{ 0}\text{.6021}$
$\text{t = 1386}\text{.6 sec}$
-Therefore, a total of 1386.6 sec time will be taken by the reactant to reduce up to 2.5g.
Additional Information:
-The physical significance of k is: It represents the fraction of the reactant decomposed per unit time of the constant concentration.
-The common formula of rate equation for all the orders except for n=1 will be: ${{\text{k}}_{\text{n}}}\text{ = }\dfrac{1}{t\left( n-1 \right)}\left( \dfrac{1}{{{\left( a-x \right)}^{n-1}}}-\dfrac{1}{{{a}^{n-1}}} \right)$
-Zero-order reactions occur under special conditions and are very uncommon.
They generally occur in the heterogeneous system.
Note: Students should not get confused between specific reaction rate and rate constant. The specific reaction rate is also a rate constant but it is a rate of reaction in which the specific conditions are applied.
Complete answer:
-To find the time that will reduce the concentration from 10 g to 2.5 g it is given that specific reaction rate or k = ${{10}^{-3}}$, initial concentration is $({{\text{A}}_{\text{O}}}\text{) = 10g}$ and the final concentration is $(\text{A) = 2}\text{.5g}$.
-So, we can apply the formula of the first order that is:
$\text{k = }\dfrac{2.303}{\text{t}}\log \dfrac{{{\text{A}}_{\text{O}}}}{\text{A}}$
-It can also be written as:
$\text{t = }\dfrac{2.303}{\text{k}}\log \dfrac{{{\text{A}}_{\text{O}}}}{\text{A}}$
$\text{t = }\dfrac{2.303}{{{10}^{-3}}}\log \dfrac{10}{2.5}$
$\text{t = 2030 }\cdot \text{ log4}$
-Now, the value of log4 from the log table is 0.6021, so by applying it in the above equation, we will get:
$\text{t = 2303 }\cdot \text{ 0}\text{.6021}$
$\text{t = 1386}\text{.6 sec}$
-Therefore, a total of 1386.6 sec time will be taken by the reactant to reduce up to 2.5g.
Additional Information:
-The physical significance of k is: It represents the fraction of the reactant decomposed per unit time of the constant concentration.
-The common formula of rate equation for all the orders except for n=1 will be: ${{\text{k}}_{\text{n}}}\text{ = }\dfrac{1}{t\left( n-1 \right)}\left( \dfrac{1}{{{\left( a-x \right)}^{n-1}}}-\dfrac{1}{{{a}^{n-1}}} \right)$
-Zero-order reactions occur under special conditions and are very uncommon.
They generally occur in the heterogeneous system.
Note: Students should not get confused between specific reaction rate and rate constant. The specific reaction rate is also a rate constant but it is a rate of reaction in which the specific conditions are applied.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

