
A first-order reaction has a specific reaction rate of $\text{1}{{\text{0}}^{-3}}\text{ }{{\text{s}}^{1-}}$. How much time will it take for 10gm of this to reduce to 2.5 gm?
Answer
574.8k+ views
Hint: The first-order reaction depends only on one reactant whereas Zero order reaction does not depend on any reacting species. The formula of the first-order reaction is $\text{k = }\dfrac{2.303}{\text{t}}\log \dfrac{{{\text{A}}_{\text{O}}}}{\text{A}}$.
Complete answer:
-To find the time that will reduce the concentration from 10 g to 2.5 g it is given that specific reaction rate or k = ${{10}^{-3}}$, initial concentration is $({{\text{A}}_{\text{O}}}\text{) = 10g}$ and the final concentration is $(\text{A) = 2}\text{.5g}$.
-So, we can apply the formula of the first order that is:
$\text{k = }\dfrac{2.303}{\text{t}}\log \dfrac{{{\text{A}}_{\text{O}}}}{\text{A}}$
-It can also be written as:
$\text{t = }\dfrac{2.303}{\text{k}}\log \dfrac{{{\text{A}}_{\text{O}}}}{\text{A}}$
$\text{t = }\dfrac{2.303}{{{10}^{-3}}}\log \dfrac{10}{2.5}$
$\text{t = 2030 }\cdot \text{ log4}$
-Now, the value of log4 from the log table is 0.6021, so by applying it in the above equation, we will get:
$\text{t = 2303 }\cdot \text{ 0}\text{.6021}$
$\text{t = 1386}\text{.6 sec}$
-Therefore, a total of 1386.6 sec time will be taken by the reactant to reduce up to 2.5g.
Additional Information:
-The physical significance of k is: It represents the fraction of the reactant decomposed per unit time of the constant concentration.
-The common formula of rate equation for all the orders except for n=1 will be: ${{\text{k}}_{\text{n}}}\text{ = }\dfrac{1}{t\left( n-1 \right)}\left( \dfrac{1}{{{\left( a-x \right)}^{n-1}}}-\dfrac{1}{{{a}^{n-1}}} \right)$
-Zero-order reactions occur under special conditions and are very uncommon.
They generally occur in the heterogeneous system.
Note: Students should not get confused between specific reaction rate and rate constant. The specific reaction rate is also a rate constant but it is a rate of reaction in which the specific conditions are applied.
Complete answer:
-To find the time that will reduce the concentration from 10 g to 2.5 g it is given that specific reaction rate or k = ${{10}^{-3}}$, initial concentration is $({{\text{A}}_{\text{O}}}\text{) = 10g}$ and the final concentration is $(\text{A) = 2}\text{.5g}$.
-So, we can apply the formula of the first order that is:
$\text{k = }\dfrac{2.303}{\text{t}}\log \dfrac{{{\text{A}}_{\text{O}}}}{\text{A}}$
-It can also be written as:
$\text{t = }\dfrac{2.303}{\text{k}}\log \dfrac{{{\text{A}}_{\text{O}}}}{\text{A}}$
$\text{t = }\dfrac{2.303}{{{10}^{-3}}}\log \dfrac{10}{2.5}$
$\text{t = 2030 }\cdot \text{ log4}$
-Now, the value of log4 from the log table is 0.6021, so by applying it in the above equation, we will get:
$\text{t = 2303 }\cdot \text{ 0}\text{.6021}$
$\text{t = 1386}\text{.6 sec}$
-Therefore, a total of 1386.6 sec time will be taken by the reactant to reduce up to 2.5g.
Additional Information:
-The physical significance of k is: It represents the fraction of the reactant decomposed per unit time of the constant concentration.
-The common formula of rate equation for all the orders except for n=1 will be: ${{\text{k}}_{\text{n}}}\text{ = }\dfrac{1}{t\left( n-1 \right)}\left( \dfrac{1}{{{\left( a-x \right)}^{n-1}}}-\dfrac{1}{{{a}^{n-1}}} \right)$
-Zero-order reactions occur under special conditions and are very uncommon.
They generally occur in the heterogeneous system.
Note: Students should not get confused between specific reaction rate and rate constant. The specific reaction rate is also a rate constant but it is a rate of reaction in which the specific conditions are applied.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

