A driver driving a truck at a constant speed of 20m/s suddenly saw a parked car ahead of him at a distance of 95m. He applies the brakes after sometime to produce retardation of \[2.5m/{s^2}\]. If an accident was avoided, his reaction time is?
A. 0.5 s
B. 0.75 s
C. 0.8 s
D. 1 s
Answer
Verified
459.6k+ views
Hint: As some of the quantities of the motion are given, and time has to be calculated, we can use Newton's equations of motion to find the required value. The reaction time will be based upon the distance left to be covered when the body comes to rest after a specific period of time.
Formula used:
1) \[v = u + at\] where, v and u are final and initial velocities respectively, a is acceleration and t is time taken.
2) $s = ut + \dfrac{1}{2}a{t^2}$ where s is the distance covered.
Complete step by step answer:
It is given that the driver was moving initially at a constant speed of 20m/s, then applies the brake to finally stop the vehicle (vehicle comes at rest). Retardation (negative acceleration) produced is of magnitude \[2.5m/{s^2}\].
From Newton’s first equation of motion:
\[v = u + at\] here,
Initial velocity (u) = 20 (given)
Final velocity (v) = 0 (come to rest)
Acceleration (a) = - 2.5 (negative because it is retarded)
Time (t) = t (say)
\[
0 = 20 - 2.5t \\
\Rightarrow 2.5t = 20 \\
\Rightarrow t = \dfrac{{20}}{{2.5}} \\
\Rightarrow t = \dfrac{{20 \times 10}}{{25}} \\
\Rightarrow t = 8s \\
\]
Thus the truck took 8 seconds to come to rest.
Now, calculating the distance driver can cover within 8 seconds using Newton’s second equation of motion:
$s = ut + \dfrac{1}{2}a{t^2}$
Substituting the known values to find the distance s:
$
s = \left( {20 \times 8} \right) + \dfrac{1}{2} \times \left( { - 2.5} \right) \times {\left( 8 \right)^2} \\
\Rightarrow s = \left( {20 \times 8} \right) - \dfrac{1}{2} \times 2.5 \times 64 \\
\Rightarrow s = 160 - 80 \\
\Rightarrow s = 80m \\
$
The truck can cover 80 metres in 8 seconds, but the required distance to be covered is 95 metres (given). So the extra distance is:
$95 - 80 = 15m$
Thus, the driver’s reaction time will be based on this distance and his initial speed 20 m/s:
\[
S = \dfrac{D}{T} \\
\Rightarrow T = \dfrac{D}{S} \\
\Rightarrow T = \dfrac{{15}}{{20}} \\
\therefore T = 0.75s \\
\]
Therefore, the reaction time of the truck driver is 0.75 seconds and the correct option is B.
Note:We decide which equation of motion is to be used by observing the quantities that are given and which needs to be calculated and choose the equation which satisfies the needs. We used the remaining distance to calculate reaction time because it is given that the accident was just avoided but the distance the truck was covering before coming to rest was lesser compared to the given distance. So, the distance of his reaction time would be the difference between the two.
Formula used:
1) \[v = u + at\] where, v and u are final and initial velocities respectively, a is acceleration and t is time taken.
2) $s = ut + \dfrac{1}{2}a{t^2}$ where s is the distance covered.
Complete step by step answer:
It is given that the driver was moving initially at a constant speed of 20m/s, then applies the brake to finally stop the vehicle (vehicle comes at rest). Retardation (negative acceleration) produced is of magnitude \[2.5m/{s^2}\].
From Newton’s first equation of motion:
\[v = u + at\] here,
Initial velocity (u) = 20 (given)
Final velocity (v) = 0 (come to rest)
Acceleration (a) = - 2.5 (negative because it is retarded)
Time (t) = t (say)
\[
0 = 20 - 2.5t \\
\Rightarrow 2.5t = 20 \\
\Rightarrow t = \dfrac{{20}}{{2.5}} \\
\Rightarrow t = \dfrac{{20 \times 10}}{{25}} \\
\Rightarrow t = 8s \\
\]
Thus the truck took 8 seconds to come to rest.
Now, calculating the distance driver can cover within 8 seconds using Newton’s second equation of motion:
$s = ut + \dfrac{1}{2}a{t^2}$
Substituting the known values to find the distance s:
$
s = \left( {20 \times 8} \right) + \dfrac{1}{2} \times \left( { - 2.5} \right) \times {\left( 8 \right)^2} \\
\Rightarrow s = \left( {20 \times 8} \right) - \dfrac{1}{2} \times 2.5 \times 64 \\
\Rightarrow s = 160 - 80 \\
\Rightarrow s = 80m \\
$
The truck can cover 80 metres in 8 seconds, but the required distance to be covered is 95 metres (given). So the extra distance is:
$95 - 80 = 15m$
Thus, the driver’s reaction time will be based on this distance and his initial speed 20 m/s:
\[
S = \dfrac{D}{T} \\
\Rightarrow T = \dfrac{D}{S} \\
\Rightarrow T = \dfrac{{15}}{{20}} \\
\therefore T = 0.75s \\
\]
Therefore, the reaction time of the truck driver is 0.75 seconds and the correct option is B.
Note:We decide which equation of motion is to be used by observing the quantities that are given and which needs to be calculated and choose the equation which satisfies the needs. We used the remaining distance to calculate reaction time because it is given that the accident was just avoided but the distance the truck was covering before coming to rest was lesser compared to the given distance. So, the distance of his reaction time would be the difference between the two.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE