Answer
Verified
447k+ views
Hint:since the inclined planes have same altitude and length it means total energy (rotational kinetic energy plus translational kinetic energy) will be same so the object which has more linear velocity at the bottom will reach first or the object which has more translational kinetic energy at the bottom of the inclined plane(assuming both objects disk and sphere performs pure rolling)
Complete step by step answer:
For an object rolling in an inclined plane,torque acting on it will be only due to friction.
Therefore,$\tau = fR$ where $f$ is friction and R is radius of the object.
Let the moment of inertia of the object be $I$. Then angular acceleration will be,
$\alpha = \dfrac{\tau }{I}\\
\Rightarrow\alpha = \dfrac{{fR}}{I}$
And forces on the object will be gravitational force and friction
Acceleration along the incline will be $a = \dfrac{{mg\sin \theta - f}}{m}$
For pure rolling,
$a = \alpha R$
$ \Rightarrow \dfrac{{mg\sin \theta - f}}{m} = \dfrac{{fR \times R}}{I}$
$ \Rightarrow g\sin \theta = \dfrac{{f{R^2}}}{I} + \dfrac{f}{m}$
$ \Rightarrow f = \dfrac{{mgI\sin \theta }}{{I + m{R^2}}}\\
\Rightarrow f= \dfrac{{mg\sin \theta }}{{1 + \dfrac{{m{R^2}}}{I}}}$
Once we know the value of friction we can find the value of acceleration.
Therefore,
$a = \dfrac{{mg\sin \theta - f}}{m}\\
\Rightarrow a= \dfrac{{mg\sin \theta - \dfrac{{mgI\sin \theta }}{{I + m{R^2}}}}}{m}\\
\Rightarrow a= g\sin \theta (1 - \dfrac{I}{{I + m{R^2}}})\\
\Rightarrow a= g\sin \theta (\dfrac{{m{R^2}}}{{I + m{R^2}}})$
If we write moment of inertia in terms of radius of gyration
i.e; $I = m{K^2}$
then value of acceleration $a = \dfrac{{g\sin \theta }}{{1 + \dfrac{{{K^2}}}{{{R^2}}}}}$
As we can see from the above equation,larger the value of K smaller the acceleration and vice versa.
For disc K is R and for sphere K is $\sqrt {\dfrac{2}{5}} $R. Since the value of K is smaller in sphere it means acceleration of sphere will be more therefore the sphere will reach first.
Hence Option B is correct.
Note:as here you can see acceleration does not depend upon the mass of the object it only depends upon value of K and value of K depends upon the geometry of the object. What it tells us is that no matter what the mass and size of an object is, as long as the geometry of the objects is the same it will take the same time to reach the ground in an inclined plane.
Complete step by step answer:
For an object rolling in an inclined plane,torque acting on it will be only due to friction.
Therefore,$\tau = fR$ where $f$ is friction and R is radius of the object.
Let the moment of inertia of the object be $I$. Then angular acceleration will be,
$\alpha = \dfrac{\tau }{I}\\
\Rightarrow\alpha = \dfrac{{fR}}{I}$
And forces on the object will be gravitational force and friction
Acceleration along the incline will be $a = \dfrac{{mg\sin \theta - f}}{m}$
For pure rolling,
$a = \alpha R$
$ \Rightarrow \dfrac{{mg\sin \theta - f}}{m} = \dfrac{{fR \times R}}{I}$
$ \Rightarrow g\sin \theta = \dfrac{{f{R^2}}}{I} + \dfrac{f}{m}$
$ \Rightarrow f = \dfrac{{mgI\sin \theta }}{{I + m{R^2}}}\\
\Rightarrow f= \dfrac{{mg\sin \theta }}{{1 + \dfrac{{m{R^2}}}{I}}}$
Once we know the value of friction we can find the value of acceleration.
Therefore,
$a = \dfrac{{mg\sin \theta - f}}{m}\\
\Rightarrow a= \dfrac{{mg\sin \theta - \dfrac{{mgI\sin \theta }}{{I + m{R^2}}}}}{m}\\
\Rightarrow a= g\sin \theta (1 - \dfrac{I}{{I + m{R^2}}})\\
\Rightarrow a= g\sin \theta (\dfrac{{m{R^2}}}{{I + m{R^2}}})$
If we write moment of inertia in terms of radius of gyration
i.e; $I = m{K^2}$
then value of acceleration $a = \dfrac{{g\sin \theta }}{{1 + \dfrac{{{K^2}}}{{{R^2}}}}}$
As we can see from the above equation,larger the value of K smaller the acceleration and vice versa.
For disc K is R and for sphere K is $\sqrt {\dfrac{2}{5}} $R. Since the value of K is smaller in sphere it means acceleration of sphere will be more therefore the sphere will reach first.
Hence Option B is correct.
Note:as here you can see acceleration does not depend upon the mass of the object it only depends upon value of K and value of K depends upon the geometry of the object. What it tells us is that no matter what the mass and size of an object is, as long as the geometry of the objects is the same it will take the same time to reach the ground in an inclined plane.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it