Answer
Verified
445.8k+ views
Hint: In this particular question use the concept that first fixed the first and second place letters and arrange the remaining letters then fixed the first and third place letters at starting and arrange the remaining letters this process continues till we get the given word so use these concepts to reach the solution of the question.
Complete step by step answer:
Given word
CRICKET
As we see there are 7 letters in the given word.
Now we have to arrange them in a dictionary.
So first write the place value of these letters.
C – 1, C – 2, E – 3, I – 4, K – 5, R – 6, T – 7.
Now we have to arrange them in a dictionary.
So if the first and second letters are C so the number of ways to arrange the remaining 5 letters = 5!
Now if first C and second E so the number of ways to arrange the remaining 5 letters = 5!
Now if first C and second I so the number of ways to arrange the remaining 5 letters = 5!
Now if first C and second K so the number of ways to arrange the remaining 5 letters = 5!
Now if first C, second R and third C so the number of ways to arrange the remaining 4 letters = 4!
Now if first C, second R and third E so the number of ways to arrange the remaining 4 letters = 4!
Now if first C, second R, third I, fourth C, fifth E so the number of ways to arrange the remaining 2 letters = 2!
Now if first C, second R, third I, fourth C, fifth K, sixth E and seventh T = 1 way
So the position of word CRICKET in the dictionary is the sum of all the above cases.
Therefore, the position of the word CRICKET in the dictionary is = $4 \times 5! + 2 \times 4! + 2! + 1$
Now simplify it we have,
Therefore, position of word CRICKET in the dictionary is
= $4 \times \left( {120} \right) + 2 \times \left( {24} \right) + 2 + 1 = 480 + 48 + 3 = 531$
So the number of words before the given word CRICKET = 531 – 1 = 530.
So this is the required answer.
So, the correct answer is “Option A”.
Note: Whenever we face such types of questions the key concept we have to remember is that the position of word CRICKET in the dictionary is the sum of all the cases as above and always recall that the number of ways to arrange n different objects are n!, so after addition just simplify and subtract the last word from the summation value we will get the required number of words before the given word CRICKET.
Complete step by step answer:
Given word
CRICKET
As we see there are 7 letters in the given word.
Now we have to arrange them in a dictionary.
So first write the place value of these letters.
C – 1, C – 2, E – 3, I – 4, K – 5, R – 6, T – 7.
Now we have to arrange them in a dictionary.
So if the first and second letters are C so the number of ways to arrange the remaining 5 letters = 5!
Now if first C and second E so the number of ways to arrange the remaining 5 letters = 5!
Now if first C and second I so the number of ways to arrange the remaining 5 letters = 5!
Now if first C and second K so the number of ways to arrange the remaining 5 letters = 5!
Now if first C, second R and third C so the number of ways to arrange the remaining 4 letters = 4!
Now if first C, second R and third E so the number of ways to arrange the remaining 4 letters = 4!
Now if first C, second R, third I, fourth C, fifth E so the number of ways to arrange the remaining 2 letters = 2!
Now if first C, second R, third I, fourth C, fifth K, sixth E and seventh T = 1 way
So the position of word CRICKET in the dictionary is the sum of all the above cases.
Therefore, the position of the word CRICKET in the dictionary is = $4 \times 5! + 2 \times 4! + 2! + 1$
Now simplify it we have,
Therefore, position of word CRICKET in the dictionary is
= $4 \times \left( {120} \right) + 2 \times \left( {24} \right) + 2 + 1 = 480 + 48 + 3 = 531$
So the number of words before the given word CRICKET = 531 – 1 = 530.
So this is the required answer.
So, the correct answer is “Option A”.
Note: Whenever we face such types of questions the key concept we have to remember is that the position of word CRICKET in the dictionary is the sum of all the cases as above and always recall that the number of ways to arrange n different objects are n!, so after addition just simplify and subtract the last word from the summation value we will get the required number of words before the given word CRICKET.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The mountain range which stretches from Gujarat in class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths