
A cylindrical tub of radius 12 cm contains water to a depth of 20cm. A spherical ball is dropped into the tub and the level of the water is raised by 6.75 cm, find the radius of the ball.
Answer
615k+ views
Hint: - Volume of spherical ball\[{\text{ = }}\dfrac{4}{3}\pi r_1^3\], (where ${r_1}$is the radius of the ball), and the volume of cylinder\[{{\text{V}}_C} = \pi {r^2}h\], (where r is the radius and h is the height of the cylinder)
Given data:
Radius of cylindrical tube \[\left( r \right) = 12cm\]
Depth of water in cylindrical tube\[\left( h \right) = 20cm\]
Volume of cylinder without rise\[{{\text{V}}_C} = \pi {r^2}h = \pi {\left( {12} \right)^2}\left( {20} \right) = 2880\pi c{m^3}\]
After dropping the spherical ball the level of water is raised by 6.75 cm.
$ \Rightarrow $New depth of water in cylindrical tube\[\left( {{h_1}} \right) = 20 + 6.75 = 26.75cm\]
$ \Rightarrow $New cylindrical volume \[{\text{ = }}\pi {r^2}{h_1} = \pi {\left( {12} \right)^2}\left( {26.75} \right) = 3852\pi c{m^3}\]
Volume of spherical ball\[{\text{ = }}\dfrac{4}{3}\pi r_1^3\], (where ${r_1}$is the radius of the ball)
Therefore new cylindrical volume $ = $ Volume of spherical ball$ + $ Volume of cylinder \[{{\text{V}}_C}\]without rise
\[
\Rightarrow 3852\pi = \dfrac{4}{3}\pi r_1^3 + 2880\pi \\
\Rightarrow \dfrac{4}{3}\pi r_i^3 = 972\pi \\
\Rightarrow r_1^3 = 729 = {\left( 9 \right)^3} \\
\Rightarrow {r_1} = 9cm \\
\]
So, the radius of the ball is 9cm.
Note: - In such types of questions always remember the formula of volume of cylinder and spherical ball which is stated above, then using these formulas, calculate the new volume of the cylindrical tub, when spherical ball is dropped in cylindrical tub and simplify, we will get the required radius of the ball.
Given data:
Radius of cylindrical tube \[\left( r \right) = 12cm\]
Depth of water in cylindrical tube\[\left( h \right) = 20cm\]
Volume of cylinder without rise\[{{\text{V}}_C} = \pi {r^2}h = \pi {\left( {12} \right)^2}\left( {20} \right) = 2880\pi c{m^3}\]
After dropping the spherical ball the level of water is raised by 6.75 cm.
$ \Rightarrow $New depth of water in cylindrical tube\[\left( {{h_1}} \right) = 20 + 6.75 = 26.75cm\]
$ \Rightarrow $New cylindrical volume \[{\text{ = }}\pi {r^2}{h_1} = \pi {\left( {12} \right)^2}\left( {26.75} \right) = 3852\pi c{m^3}\]
Volume of spherical ball\[{\text{ = }}\dfrac{4}{3}\pi r_1^3\], (where ${r_1}$is the radius of the ball)
Therefore new cylindrical volume $ = $ Volume of spherical ball$ + $ Volume of cylinder \[{{\text{V}}_C}\]without rise
\[
\Rightarrow 3852\pi = \dfrac{4}{3}\pi r_1^3 + 2880\pi \\
\Rightarrow \dfrac{4}{3}\pi r_i^3 = 972\pi \\
\Rightarrow r_1^3 = 729 = {\left( 9 \right)^3} \\
\Rightarrow {r_1} = 9cm \\
\]
So, the radius of the ball is 9cm.
Note: - In such types of questions always remember the formula of volume of cylinder and spherical ball which is stated above, then using these formulas, calculate the new volume of the cylindrical tub, when spherical ball is dropped in cylindrical tub and simplify, we will get the required radius of the ball.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

How is gypsum formed class 10 chemistry CBSE

If the line 3x + 4y 24 0 intersects the xaxis at t-class-10-maths-CBSE

Sugar present in DNA is A Heptose B Hexone C Tetrose class 10 biology CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

What are luminous and Non luminous objects class 10 physics CBSE

