Answer
Verified
492k+ views
Hint: We use the concept of “law of conservation of mass” , considering density to be constant of water and thus equating their volume in a cylindrical bucket and after the water is emptied to the rectangular tank.
Complete step-by-step answer:
In the above question we will equate the volume of cylindrical bucket and rectangular tank.
As, we already know that;
Volume of cylindrical bucket = πr2h, where, r= radius and h= height.
And, the volume of the cuboid(rectangular tank) = \[l\times b\times h\] , where, l= length,b= width and h= height.
Now,we have; r=\[\dfrac{diameter}{2}\] =28/2=14cm and h=72cm.
So,the volume of the cylindrical bucket= \[\pi \times {{14}^{2}}\times 72c{{m}^{3}}\].
Again,for the rectangular tank we have;
l=66cm ,b=28cm and h= height of water level= ?
So, the volume = \[(66\times 28\times h)c{{m}^{3}}\].
Now, we will equate the volume and we get;
\[\pi \times {{14}^{2}}\times 72c{{m}^{3}}\]= \[(66\times 28\times h)c{{m}^{3}}\]
On, further simplification we will get;
$\Rightarrow h=\dfrac{\pi \times {{14}^{2}}\times 72}{66\times 28}cm$
On calculating the above we get;
h= 24cm
Hence, the answer of the above question will be 24cm.
Therefore, the height of the water level in the tank will be 24cm.
NOTE:
Remember the concept that in the above type question we always use the concept of equating volume under the condition mentioned above. Also, be careful during the calculation and don’t use the value of π as 3.14 anywhere until it’s not mentioned.
Complete step-by-step answer:
In the above question we will equate the volume of cylindrical bucket and rectangular tank.
As, we already know that;
Volume of cylindrical bucket = πr2h, where, r= radius and h= height.
And, the volume of the cuboid(rectangular tank) = \[l\times b\times h\] , where, l= length,b= width and h= height.
Now,we have; r=\[\dfrac{diameter}{2}\] =28/2=14cm and h=72cm.
So,the volume of the cylindrical bucket= \[\pi \times {{14}^{2}}\times 72c{{m}^{3}}\].
Again,for the rectangular tank we have;
l=66cm ,b=28cm and h= height of water level= ?
So, the volume = \[(66\times 28\times h)c{{m}^{3}}\].
Now, we will equate the volume and we get;
\[\pi \times {{14}^{2}}\times 72c{{m}^{3}}\]= \[(66\times 28\times h)c{{m}^{3}}\]
On, further simplification we will get;
$\Rightarrow h=\dfrac{\pi \times {{14}^{2}}\times 72}{66\times 28}cm$
On calculating the above we get;
h= 24cm
Hence, the answer of the above question will be 24cm.
Therefore, the height of the water level in the tank will be 24cm.
NOTE:
Remember the concept that in the above type question we always use the concept of equating volume under the condition mentioned above. Also, be careful during the calculation and don’t use the value of π as 3.14 anywhere until it’s not mentioned.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE