
A contractor on construction job specifies a penalty for delay of completion beyond a certain date as follows Rs. 200 for the first day, Rs. 250 for the second day, Rs. 300 for the third day, etc. The penalty for each succeeding day being Rs. 50 more than the preceding day. How much money the contractor has to pay as penalty, if he delayed the work by 30 days.
Answer
580.8k+ views
Hint: The problem is of arithmetic progression as on each day after the cutoff date 50 Rs. is being added as the penalty.
Complete step by step solution: It is given that for the first day after the cutoff date the penalty is 200 Rs.
On the second day the penalty is 250 Rs.
On the third day the penalty is 300 Rs.
This continues for 30 days like this after the cutoff day and 50 Rs. is being added on each day as the penalty.
This follows a unique series, which is better known as arithmetic progression series. The first term of the series is 200, second is 250, and the third is 300.
The total penalty is to be calculated at the end of 30th day. Therefore, the number of terms of an AP is 30.
The N-th term of an arithmetic progression is given by,
${a_n} = a + \left( {n - 1} \right)d \cdots (1)$
Where,
$a = $ First term
$n = $ Number of terms.
$d = $ Common difference.
Here, $a = 200$ , $n = 30$ and $d = 50$.
Substituting the values in equation (1),
${a_n} = 200 + (30 - 1)50$
$\begin{gathered}
{a_n} = 200 + \left( {29} \right)50 \\
{a_n} = 200 + 1450 \\
{a_n} = 1650 \\
\end{gathered} $
Therefore, the contractor has to pay Rs.1650 as penalty at the end of the 30-th day of the work.
Note: This is a generalized real life problem which is formed into an arithmetic progression.
The important thing is to realize that the successive terms of the sequence differ by a common number which is 50 Rs. in this case. The formulas to be remembered for the arithmetic progression
N-th term, ${a_n} = a + (n - 1)d$
Sum of N-th term, ${S_n} = \dfrac{a}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$
Complete step by step solution: It is given that for the first day after the cutoff date the penalty is 200 Rs.
On the second day the penalty is 250 Rs.
On the third day the penalty is 300 Rs.
This continues for 30 days like this after the cutoff day and 50 Rs. is being added on each day as the penalty.
This follows a unique series, which is better known as arithmetic progression series. The first term of the series is 200, second is 250, and the third is 300.
The total penalty is to be calculated at the end of 30th day. Therefore, the number of terms of an AP is 30.
The N-th term of an arithmetic progression is given by,
${a_n} = a + \left( {n - 1} \right)d \cdots (1)$
Where,
$a = $ First term
$n = $ Number of terms.
$d = $ Common difference.
Here, $a = 200$ , $n = 30$ and $d = 50$.
Substituting the values in equation (1),
${a_n} = 200 + (30 - 1)50$
$\begin{gathered}
{a_n} = 200 + \left( {29} \right)50 \\
{a_n} = 200 + 1450 \\
{a_n} = 1650 \\
\end{gathered} $
Therefore, the contractor has to pay Rs.1650 as penalty at the end of the 30-th day of the work.
Note: This is a generalized real life problem which is formed into an arithmetic progression.
The important thing is to realize that the successive terms of the sequence differ by a common number which is 50 Rs. in this case. The formulas to be remembered for the arithmetic progression
N-th term, ${a_n} = a + (n - 1)d$
Sum of N-th term, ${S_n} = \dfrac{a}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

