
A constant force F acts on a particle of mass 1 kg moving with a velocity v, for one second. The distance moved in that time is :
A. $0$
B. $\dfrac{F}{2}$
C. $2F$
D. $\dfrac{v}{2}$
E. $v + \dfrac{F}{2}$
Answer
579.3k+ views
Hint: If a constant force F is acting on a body of mass m, then the acceleration will be constant and given by $a = \dfrac{F}{m}$ as Newton’s second law of motion states that $F = ma$ .
If a body is moving with a constant acceleration $a$ , then from the equation of motion, we can say that $s = ut + \dfrac{1}{2}a{t^2}$ where $s$ is the displacement of that particle in time $t$ and $u$ is its initial velocity.
Complete step by step solution:
As given in the question that the force applied on the body of mass 1 kg is constant and equal to $F$ .
So, as we know that if a constant force F is acting on a body of mass m, then the acceleration will be constant and given by $a = \dfrac{F}{m}$ as Newton’s second law of motion states that $F = ma$ .
So, $a = \dfrac{F}{1} = F$
Now, it is given in the question that the body moves for 1 second i.e. $t = 1$
We also know that if a body is moving with a constant acceleration $a$ , then from the equation of motion, we can say that $s = ut + \dfrac{1}{2}a{t^2}$ where $s$ is the displacement of that particle in time $t$ and $u$ is its initial velocity.
Let the distance moved in that time be $s$
Then, from the equation of motion $s = ut + \dfrac{1}{2}a{t^2}$ ,
$s = v \times 1 + \dfrac{1}{2} \times F \times {1^2} = v + \dfrac{F}{2}$ (as $a = F$ and $u = v$)
$\therefore$The distance moved in that time is $v + \dfrac{F}{2}$. Hence, option (E) is the correct answer.
Note:
Remember that the equation of motion $s = ut + \dfrac{1}{2}a{t^2}$ is only applicable when the acceleration through which the body is moving is constant throughout the motion.
If the force applied on a body is constant throughout the motion then its acceleration will also be constant.
If a body is moving with a constant acceleration $a$ , then from the equation of motion, we can say that $s = ut + \dfrac{1}{2}a{t^2}$ where $s$ is the displacement of that particle in time $t$ and $u$ is its initial velocity.
Complete step by step solution:
As given in the question that the force applied on the body of mass 1 kg is constant and equal to $F$ .
So, as we know that if a constant force F is acting on a body of mass m, then the acceleration will be constant and given by $a = \dfrac{F}{m}$ as Newton’s second law of motion states that $F = ma$ .
So, $a = \dfrac{F}{1} = F$
Now, it is given in the question that the body moves for 1 second i.e. $t = 1$
We also know that if a body is moving with a constant acceleration $a$ , then from the equation of motion, we can say that $s = ut + \dfrac{1}{2}a{t^2}$ where $s$ is the displacement of that particle in time $t$ and $u$ is its initial velocity.
Let the distance moved in that time be $s$
Then, from the equation of motion $s = ut + \dfrac{1}{2}a{t^2}$ ,
$s = v \times 1 + \dfrac{1}{2} \times F \times {1^2} = v + \dfrac{F}{2}$ (as $a = F$ and $u = v$)
$\therefore$The distance moved in that time is $v + \dfrac{F}{2}$. Hence, option (E) is the correct answer.
Note:
Remember that the equation of motion $s = ut + \dfrac{1}{2}a{t^2}$ is only applicable when the acceleration through which the body is moving is constant throughout the motion.
If the force applied on a body is constant throughout the motion then its acceleration will also be constant.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

