
A constant force F acts on a particle of mass 1 kg moving with a velocity v, for one second. The distance moved in that time is :
A. $0$
B. $\dfrac{F}{2}$
C. $2F$
D. $\dfrac{v}{2}$
E. $v + \dfrac{F}{2}$
Answer
578.4k+ views
Hint: If a constant force F is acting on a body of mass m, then the acceleration will be constant and given by $a = \dfrac{F}{m}$ as Newton’s second law of motion states that $F = ma$ .
If a body is moving with a constant acceleration $a$ , then from the equation of motion, we can say that $s = ut + \dfrac{1}{2}a{t^2}$ where $s$ is the displacement of that particle in time $t$ and $u$ is its initial velocity.
Complete step by step solution:
As given in the question that the force applied on the body of mass 1 kg is constant and equal to $F$ .
So, as we know that if a constant force F is acting on a body of mass m, then the acceleration will be constant and given by $a = \dfrac{F}{m}$ as Newton’s second law of motion states that $F = ma$ .
So, $a = \dfrac{F}{1} = F$
Now, it is given in the question that the body moves for 1 second i.e. $t = 1$
We also know that if a body is moving with a constant acceleration $a$ , then from the equation of motion, we can say that $s = ut + \dfrac{1}{2}a{t^2}$ where $s$ is the displacement of that particle in time $t$ and $u$ is its initial velocity.
Let the distance moved in that time be $s$
Then, from the equation of motion $s = ut + \dfrac{1}{2}a{t^2}$ ,
$s = v \times 1 + \dfrac{1}{2} \times F \times {1^2} = v + \dfrac{F}{2}$ (as $a = F$ and $u = v$)
$\therefore$The distance moved in that time is $v + \dfrac{F}{2}$. Hence, option (E) is the correct answer.
Note:
Remember that the equation of motion $s = ut + \dfrac{1}{2}a{t^2}$ is only applicable when the acceleration through which the body is moving is constant throughout the motion.
If the force applied on a body is constant throughout the motion then its acceleration will also be constant.
If a body is moving with a constant acceleration $a$ , then from the equation of motion, we can say that $s = ut + \dfrac{1}{2}a{t^2}$ where $s$ is the displacement of that particle in time $t$ and $u$ is its initial velocity.
Complete step by step solution:
As given in the question that the force applied on the body of mass 1 kg is constant and equal to $F$ .
So, as we know that if a constant force F is acting on a body of mass m, then the acceleration will be constant and given by $a = \dfrac{F}{m}$ as Newton’s second law of motion states that $F = ma$ .
So, $a = \dfrac{F}{1} = F$
Now, it is given in the question that the body moves for 1 second i.e. $t = 1$
We also know that if a body is moving with a constant acceleration $a$ , then from the equation of motion, we can say that $s = ut + \dfrac{1}{2}a{t^2}$ where $s$ is the displacement of that particle in time $t$ and $u$ is its initial velocity.
Let the distance moved in that time be $s$
Then, from the equation of motion $s = ut + \dfrac{1}{2}a{t^2}$ ,
$s = v \times 1 + \dfrac{1}{2} \times F \times {1^2} = v + \dfrac{F}{2}$ (as $a = F$ and $u = v$)
$\therefore$The distance moved in that time is $v + \dfrac{F}{2}$. Hence, option (E) is the correct answer.
Note:
Remember that the equation of motion $s = ut + \dfrac{1}{2}a{t^2}$ is only applicable when the acceleration through which the body is moving is constant throughout the motion.
If the force applied on a body is constant throughout the motion then its acceleration will also be constant.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

